Skip to main content
Log in

Computational modeling of the human atrial anatomy and electrophysiology

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This review article gives a comprehensive survey of the progress made in computational modeling of the human atria during the last 10 years. Modeling the anatomy has emerged from simple “peanut”-like structures to very detailed models including atrial wall and fiber direction. Electrophysiological models started with just two cellular models in 1998. Today, five models exist considering e.g. details of intracellular compartments and atrial heterogeneity. On the pathological side, modeling atrial remodeling and fibrotic tissue are the other important aspects. The bridge to data that are measured in the catheter laboratory and on the body surface (ECG) is under construction. Every measurement can be used either for model personalization or for validation. Potential clinical applications are briefly outlined and future research perspectives are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AF:

Atrial fibrillation

AP:

Action potential

APD:

Action potential duration

BB:

Bachmann’s bundle

BCL:

Basic cycle length

BSP(M):

Body surface potential (map)

CS:

Coronary sinus

CT:

Crista terminalis

CT:

Computed tomography

CV:

Conduction velocity

ECG:

Electrocardiogram

EP:

Electrophysiology

ERP:

Effective refractory period

IVC:

Inferior vena cava

LA:

Left atrium

LAA:

Left atrial appendage

LIPV:

Left inferior pulmonary vein

LE-MRI:

Late enhancement MRI

LSPV:

Left superior pulmonary vein

MRI:

Magnetic resonance imaging

PM:

Pectinate muscle

PV:

Pulmonary vein

PWd:

P-wave duration

RA:

Right atrium

RAA:

Right atrial appendage

RF(A):

Radio frequency (ablation)

RIPV:

Right inferior pulmonary vein

RSPV:

Right superior pulmonary vein

SN:

Sinus node

SVC:

Superior vena cava

TEE:

Transesophageal echocardiogram

WL:

Wave length

References

  1. Al Abed A, Guo T, Lovell N, Dokos S (2010) An anatomically realistic 3d model of atrial propagation based on experimentally recorded action potentials. In: Engineering in Medicine and Biology Society (EMBC) 2010 Annual International Conference of the IEEE, pp 243–246

  2. Aliot E, Haissaguerre M, Jackman W (2008) Catheter ablation of atrial fibrillation. Blackwell, USA

    Book  Google Scholar 

  3. Anderson RH, Cook AC (2007) The structure and components of the atrial chambers. Europace 9(Suppl 6):3–9

    Google Scholar 

  4. Arora R, Verheule S, Scott L, Navarrete A, Katari V, Wilson E, Vaz D, Olgin JE (2003) Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping. Circulation 107:1816–1821

    Article  PubMed  Google Scholar 

  5. Aslanidi OV, Al-Owais M, Benson AP, Colman M, Garratt CJ, Gilbert SH, Greenwood JP, Holden AV, Kharche S, Kinnell E, Pervolaraki E, Plein S, Stott J, Zhang H (2011) Virtual tissue engineering of the human atrium: modelling pharmacological actions on atrial arrhythmogenesis. Eur J Pharm Sci 46(4):209–221

    Article  PubMed  CAS  Google Scholar 

  6. Aslanidi OV, Colman MA, Stott J, Dobrzynski H, Boyett MR, Holden AV, Zhang H (2011) 3D virtual human atria: a computational platform for studying clinical atrial fibrillation. Prog Biophys Mol Biol 107:156–168

    Article  PubMed  Google Scholar 

  7. Backhaus M, Britten R, Do Chung J, Cowan B, Fonseca C, Medrano-Gracia P, Tao W, Young A (2010) The cardiac atlas project: development of a framework integrating cardiac images and models. In: Camara O, Pop M, Rhode K, Sermesant M, Smith N, Young A (eds) Statistical atlases and computational models of the heart. Lecture notes in computer science, vol 6364, pp 54–64, Springer, Berlin

  8. Badger TJ, Oakes RS, Daccarett M, Burgon NS, Akoum N, Fish EN, Blauer JJE, Rao SN, Adjei-Poku Y, Kholmovski EG, Vijayakumar S, Di Bella EVR, MacLeod RS, Marrouche NF (2009) Temporal left atrial lesion formation after ablation of atrial fibrillation. Heart Rhythm 6:161–168

    Article  PubMed  Google Scholar 

  9. Barnette AR, Bayly PV, Zhang S, Walcott GP, Ideker RE, Smith WM (2000) Estimation of 3-D conduction velocity vector fields from cardiac mapping data. IEEE Trans Biomed Eng 47: 1027–1035

    Article  PubMed  CAS  Google Scholar 

  10. Bayly PV, KenKnight BH, Rogers JM, Hillsley RE, Ideker RE, Smith WM (1998) Estimation of conduction velocity vector fields from epicardial mapping data. IEEE Trans Biomed Eng 45: 563–571

    Article  PubMed  CAS  Google Scholar 

  11. Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocardial fibers. J Physiol 268:177–210

    PubMed  CAS  Google Scholar 

  12. Berjano EJ (2006) Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future. Biomed Eng Online 5:24

    Article  PubMed  Google Scholar 

  13. Betts TR, Ho SY, Sanchez-Quintana D, Roberts PR, Anderson RH, Morgan JM (2002) Three-dimensional mapping of right atrial activation during sinus rhythm and its relationship to endocardial architecture. J Cardiovasc Electrophysiol 13:1152–1159

    Article  PubMed  Google Scholar 

  14. Blanc O, Virag N, Vesin JM, Kappenberger L (2001) A computer model of human atria with reasonable computation load and realistic anatomical properties. IEEE Trans Biomed Eng 48:1229–1237

    Article  PubMed  CAS  Google Scholar 

  15. Boineau JP, Canavan TE, Schuessler RB, Cain ME, Corr PB, Cox JL (1988) Demonstration of a widely distributed atrial pacemaker complex in the human heart. Circulation 77:1221–1237

    Article  PubMed  CAS  Google Scholar 

  16. Burdumy M, Luik A, Neher P, Hanna R, Krueger MW, Schilling C, Barschdorf H, Lorenz C, Seemann G, Schmitt C, Dössel O, Weber FM (2012) Comparing measured and simulated wave directions in the left atrium - a workflow for model personalization and validation. Biomed Tech (Berl) 57:79–87

    Article  Google Scholar 

  17. Cabo C, Pertsov AM, Baxter WT, Davidenko JM, Gray RA, Jalife J (1994) Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle. Circ Res 75:1014–1028

    Article  PubMed  CAS  Google Scholar 

  18. Cabrera JA, Ho SY, Climent V, Sanchez-Quintana D (2008) The architecture of the left lateral atrial wall: a particular anatomic region with implications for ablation of atrial fibrillation. Eur Heart J 29:356–362

    Article  PubMed  Google Scholar 

  19. Cabrera JA, Sanchez-Quintana D, Farre J, Rubio JM, Ho SY (2005) The inferior right atrial isthmus: further architectural insights for current and coming ablation technologies. J Cardiovasc Electrophysiol 16:402–408

    Article  PubMed  Google Scholar 

  20. Calkins H, Brugada J, Packer DL, Cappato R, Chen SA, Crijns HJG, Damiano RJJ, Davies DW, Haines DE, Haissaguerre M, Iesaka Y, Jackman W, Jais P, Kottkamp H, Kuck KH, Lindsay BD, Marchlinski FE, McCarthy PM, Mont JL, Morady F, Nademanee K, Natale A, Pappone C, Prystowsky E, Raviele A, Ruskin JN, Shemin RJ, Society of Thoracic Surgeons (2007) HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation developed in partnership with the European Heart Rhythm Association (EHRA) and the European Cardiac Arrhythmia Society (ECAS); in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), and the Society of Thoracic Surgeons (STS). endorsed and approved by the governing bodies of the American College of Cardiology, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, and the Heart Rhythm Society

  21. Calkins H, Ho SY, Angel Cabrera J, Della Bella P, Farre J, Kautzner J, Tchou P (2008) Anatomy of the left atrium and pulmonary veins. International Journal of Cardiology, Blackwell, USA, pp 1–10

  22. Campos FO, Wiener T, Prassl AJ, Ahammer H, Plank G, Weber Dos Santos R, Sanchez-Quintana D, Hofer E (2010) A 2D-computer model of atrial tissue based on histographs describes the electro-anatomical impact of microstructure on endocardiac potentials and electric near-fields. In: Engineering in medicine and biology society (EMBC), 2010 Annual international conference of the IEEE, pp 2541–2544

  23. Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H, Molenaar P, Difrancesco D, Baruscotti M, Longhi R, Anderson RH, Billeter R, Sharma V, Sigg DC, Boyett MR, Dobrzynski H (2009) Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation 119:1562–1575

    Article  PubMed  Google Scholar 

  24. Chen SA, Hsieh MH, Tai CT, Tsai CF, Prakash VS, Yu WC, Hsu TL, Ding YA, Chang MS (1999) Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation 100:1879–1886

    Article  PubMed  CAS  Google Scholar 

  25. Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY, Jin HW, Sun H, Su XY, Zhuang QN, Yang YQ, Li YB, Liu Y, Xu HJ, Li XF, Ma N, Mou CP, Chen Z, Barhanin J, Huang W (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299:251–254

    Article  PubMed  CAS  Google Scholar 

  26. Cherry EM, Fenton FH (2008) Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. New J Phys 10:125016

    Google Scholar 

  27. Cherry EM, Hastings HM, Evans SJ (2008) Dynamics of human atrial cell models: restitution, memory, and intracellular calcium dynamics in single cells. Prog Biophys Mol Biol 98:24–37

    Article  PubMed  CAS  Google Scholar 

  28. Clavier L, Boucher JM, Lepage R, Blanc JJ, Cornily JC (2002) Automatic P-wave analysis of patients prone to atrial fibrillation. Med Biol Eng Comput 40:63–71

    Article  PubMed  CAS  Google Scholar 

  29. Clayton RH, Bernus O, Cherry EM, Dierckx H, Fenton FH, Mirabella L, Panfilov AV, Sachse FB, Seemann G, Zhang H (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104:22–48

    Article  PubMed  CAS  Google Scholar 

  30. Coffey JL, Cristy M, Warner GG (1981) Specific absorbed fractions for photon sources uniformly distributed in the heart chambers and heart wall of a heterogeneous phantom. J Nucl Med 22:65–71

    PubMed  CAS  Google Scholar 

  31. Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. Am J Physiol 275:H301–H321

    PubMed  CAS  Google Scholar 

  32. Courtemanche M, Ramirez RJ, Nattel S (1999) Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model. Cardiovasc Res 42:477–489

    Article  PubMed  CAS  Google Scholar 

  33. Cristoforetti A, Masè M, Ravelli F (2010) A computationally efficient patient-specific simulation model for the investigation of arrhythmia mechanisms. In: Proceedings of ICE 2010, p 142

  34. Cuculich PS, Wang Y, Lindsay BD, Faddis MN, Schuessler RB, Damiano RJ, Li L, Rudy Y (2010) Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation 122:1364–1372

    Article  PubMed  Google Scholar 

  35. van Dam PM, van Oosterom A (2003) Atrial excitation assuming uniform propagation. J Cardiovasc Electrophysiol 14:S166–S171

    Article  PubMed  Google Scholar 

  36. van Dam PM, van Oosterom A (2005) Volume conductor effects involved in the genesis of the P wave. Europace 7(Suppl 2):30–38

    PubMed  Google Scholar 

  37. Dang L, Virag N, Ihara Z, Jacquemet V, Vesin JM, Schlaepfer J, Ruchat P, Kappenberger L (2005) Evaluation of ablation patterns using a biophysical model of atrial fibrillation. Ann Biomed Eng 33:465–474

    Article  PubMed  CAS  Google Scholar 

  38. De Ponti R, Ho SY, Salerno-Uriarte JA, Tritto M, Spadacini G (2002) Electroanatomic analysis of sinus impulse propagation in normal human atria. J Cardiovasc Electrophysiol 13:1–10

    Article  PubMed  Google Scholar 

  39. De Sisti A, Leclercq JF, Stiubei M, Fiorello P, Halimi F, Attuel P (2002) P wave duration and morphology predict atrial fibrillation recurrence in patients with sinus node dysfunction and atrial-based pacemaker. Pacing Clin Electrophysiol 25:1546–1554

    Article  PubMed  Google Scholar 

  40. Deneke T, Khargi K, Muller KM, Lemke B, Mugge A, Laczkovics A, Becker AE, Grewe PH (2005) Histopathology of intraoperatively induced linear radiofrequency ablation lesions in patients with chronic atrial fibrillation. Eur Heart J 26:1797–1803

    Article  PubMed  Google Scholar 

  41. Di Martino ES, Bellini C, Schwartzman DS (2011) In vivo porcine left atrial wall stress: computational model. J Biomech 44:2589–2594

    Article  PubMed  Google Scholar 

  42. Dierckx H, Bernus O, Verschelde H (2011) Accurate eikonal-curvature relation for wave fronts in locally anisotropic reaction-diffusion systems. Phys Rev Lett 107:108101

    Article  PubMed  CAS  Google Scholar 

  43. Dierckx H, Cherry E, Bernus O, Gilbert S, Holden A, Gilmour RFJ, Fenton FF (2008) Detailed anatomical reconstruction of the whole canine heart including fiber and sheet architecture using MRI and DTMRI. Heart Rhythm 5:106

    Article  Google Scholar 

  44. Dilaveris PE, Gialafos EJ, Sideris SK, Theopistou AM, Andrikopoulos GK, Kyriakidis M, Gialafos JE, Toutouzas PK (1998) Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. Am Heart J 135:733–738

    Article  PubMed  CAS  Google Scholar 

  45. Dimitri H, Ng M, Brooks AG, Kuklik P, Stiles MK, Lau DH, Antic N, Thornton A, Saint DA, McEvoy D, Antic R, Kalman JM, Sanders P (2012) Atrial remodeling in obstructive sleep apnea: implications for atrial fibrillation. Heart Rhythm 9(3):321–327

    Article  PubMed  Google Scholar 

  46. Dokos S, Cloherty SL, Lovell NH (2007) Computational model of atrial electrical activation and propagation. In: Engineering in medicine and biology society (EMBC), 2007 Annual international conference of the IEEE, vol 2007, pp 908–911

  47. Dong J, Dalal D, Scherr D, Cheema A, Nazarian S, Bilchick K, Almasry I, Cheng A, Henrikson CA, Spragg D, Marine JE, Berger RD, Calkins H (2007) Impact of heart rhythm status on registration accuracy of the left atrium for catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 18:1269–1276

    Article  PubMed  Google Scholar 

  48. Dössel O, Krueger MW, Weber FM, Schilling C, Schulze WHW, Seemann G (2011) A framework for personalization of computational models of the human atria. In: Proceedings of IEEE conference IEEE Engineering, Medical Biological Society 2011, pp 4324–4328

  49. Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, Walker MJ, Vembar M, Olszewski ME, Subramanyan K, Lavi G, Weese J (2008) Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imag 27:1189–1201

    Article  Google Scholar 

  50. Ecabert O, Peters J, Walker MJ, Ivanc T, Lorenz C, von Berg J, Lessick J, Vembar M, Weese J (2011) Segmentation of the heart and great vessels in CT images using a model-based adaptation framework. Med Image Anal 15:863–876

    Article  PubMed  Google Scholar 

  51. Efimov IR, Nikolski VP, Bub G (2004) Optical mapping. In: Wenk GE et al (eds) Encyclopedia of biomaterials and biomedical engineering. Marcel Dekker, New York, pp 1133–1142

    Google Scholar 

  52. Efimov IR, Nikolski VP, Salama G (2004) Optical imaging of the heart. Circ Res 95:21–33

    Article  PubMed  CAS  Google Scholar 

  53. Ellis WS, SippensGroenewegen A, Auslander DM, Lesh MD (2000) The role of the crista terminalis in atrial flutter and fibrillation: a computer modeling study. Ann Biomed Eng 28:742–754

    Article  PubMed  CAS  Google Scholar 

  54. Ellis WS, SippensGroenewegen A, Lesh MD (1997) The effect of linear lesions on atrial defibrillation threshold and spontaneous termination. A computer modeling study. Pacing Clin Electrophysiol 20:1145

    Google Scholar 

  55. Feld GK, Mollerus M, Birgersdotter-Green U, Fujimura O, Bahnson TD, Boyce K, Rahme M (1997) Conduction velocity in the tricuspid valve-inferior vena cava isthmus is slower in patients with type I atrial flutter compared to those without a history of atrial flutter. J Cardiovasc Electrophysiol 8:1338–1348

    Article  PubMed  CAS  Google Scholar 

  56. Feng J, Yue L, Wang Z, Nattel S (1998) Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ Res 83:541–551

    Article  PubMed  CAS  Google Scholar 

  57. Fenton F, Karma A (1998) Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 8:20–27

    Article  PubMed  Google Scholar 

  58. Fenton FH, Luther S, Cherry EM, Otani NF, Krinsky V, Pumir A, Bodenschatz E, Gilmour RFJ (2009) Termination of atrial fibrillation using pulsed low-energy far-field stimulation. Circulation 120:467–476

    Article  PubMed  Google Scholar 

  59. Fink M, Niederer SA, Cherry EM, Fenton FH, Koivumäki JT, Seemann G, Thul R, Zhang H, Sachse FB, Beard D, Crampin EJ, Smith NP (2011) Cardiac cell modelling: observations from the heart of the cardiac physiome project. Prog Biophys Mol Biol 104:2–21

    Article  PubMed  Google Scholar 

  60. Fitzgerald TN, Brooks DH, Triedman JK (2005) Identification of cardiac rhythm features by mathematical analysis of vector fields. IEEE Trans Biomed Eng 52:19–29

    Article  PubMed  Google Scholar 

  61. FitzHugh RA (1961) Impulses and physiological states in theoretical models of nerve membran. Biophys J 1:445–466

    Article  PubMed  CAS  Google Scholar 

  62. Freudenberg J, Schiemann T, Tiede U, Hohne KH (2000) Simulation of cardiac excitation patterns in a three-dimensional anatomical heart atlas. Comput Biol Med 30:191–205

    Article  PubMed  CAS  Google Scholar 

  63. Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Le Heuzey JY, Kay GN, Lowe JE, Olsson SB, Prystowsky EN, Tamargo JL, Wann S, Smith SCJ, Jacobs AK, Adams CD, Anderson JL, Antman EM, Hunt SA, Nishimura R, Ornato JP, Page RL, Riegel B, Priori SG, Blanc JJ, Budaj A, Camm AJ, Dean V, Deckers JW, Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Zamorano JL, Heart Rhythm Society (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society

  64. Genovesi S, Vincenti A, Rossi E, Pogliani D, Acquistapace I, Stella A, Valsecchi MG (2008) Atrial fibrillation and morbidity and mortality in a cohort of long-term hemodialysis patients. Am J Kidney Dis 51:255–262

    Article  PubMed  Google Scholar 

  65. Gianni D, McKeever S, Yu T, Britten R, Delingette H, Frangi A, Hunter P, Smith N (2010) Sharing and reusing cardiovascular anatomical models over the web: a step towards the implementation of the virtual physiological human project. Philos Trans A Math Phys Eng Sci 368:3039–3056

    Google Scholar 

  66. Gong Y, Xie F, Stein KM, Garfinkel A, Culianu CA, Lerman BB, Christini DJ (2007) Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci: a simulation study. Circulation 115:2094–2102

    Article  PubMed  Google Scholar 

  67. Gozolits S, Fischer G, Berger T, Hanser F, Abou-Harb M, Tilg B, Pachinger O, Hintringer F, Roithinger FX (2002) Global P wave duration on the 65-lead ECG: single-site and dual-site pacing in the structurally normal human atrium. J Cardiovasc Electrophysiol 13:1240–1245

    Article  PubMed  Google Scholar 

  68. Grandi E, Pandit SV, Voigt N, Workman AJ, Dobrev D, Jalife J, Bers DM (2011) Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circulation Research 109:1055–1066

    Article  PubMed  CAS  Google Scholar 

  69. Grandi E, Pasqualini FS, Bers DM (2010) A novel computational model of the human ventricular action potential and Ca transient. J Mol Cell Cardiol 48:112–121

    Article  PubMed  CAS  Google Scholar 

  70. Gray RA, Jalife J (1998) Ventricular fibrillation and atrial fibrillation are two different beasts. Chaos 8:65–78

    Article  PubMed  Google Scholar 

  71. Guidera SA, Steinberg JS (1993) The signal-averaged P wave duration: a rapid and noninvasive marker of risk of atrial fibrillation. J Am Coll Cardiol 21:1645–1651

    Article  PubMed  CAS  Google Scholar 

  72. Haemmerich D (2010) Biophysics of radiofrequency ablation. Crit Rev Biomed Eng 38:53–63

    Article  PubMed  Google Scholar 

  73. Haines DE (2008) Catheter ablation of cardiac arrhythmias: basic concepts and clinical applications. 3rd edn Biophysics and pathophysiology of lesion formation by transcatheter radiofrequency ablation pp. 20–34. Blackwell Futura Wiley Online Library

  74. Haissaguerre M, Jais P, Shah DC, Arentz T, Kalusche D, Takahashi A, Garrigue S, Hocini M, Peng J.T, Clementy J (2000) Catheter ablation of chronic atrial fibrillation targeting the reinitiating triggers. J Cardiovasc Electrophysiol 11:2–10

    Article  PubMed  CAS  Google Scholar 

  75. Haissaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Métayer P, Clémenty J (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666

    Article  PubMed  CAS  Google Scholar 

  76. Haissaguerre M, Lim KT, Jacquemet V, Rotter M, Dang L, Hocini M, Matsuo S, Knecht S, Jais P, Virag N (2007) Atrial fibrillatory cycle length: computer simulation and potential clinical importance. Europace 9:vi64–vi70

    Article  PubMed  Google Scholar 

  77. Hall B, Jeevanantham V, Simon R, Filippone J, Vorobiof G, Daubert J (2006) Variation in left atrial transmural wall thickness at sites commonly targeted for ablation of atrial fibrillation. J Interv Card Electrophysiol 17:127–132

    Article  PubMed  Google Scholar 

  78. Hanna R, Barschdorf H, Klinder T, Weber FM, Krueger MW, Dössel O, Lorenz C (2011) A hybrid method for automatic anatomical variant detection and segmentation. In: Functional Imaging and Modeling of the Heart 2011 Lecture Notes in Computer Science 6666 pp 333–340

  79. Hansson A, Holm M, Blomstrom P, Johansson R, Luhrs C, Brandt J, Olsson S (1998) Right atrial free wall conduction velocity and degree of anisotropy in patients with stable sinus rhythm studied during open heart surgery. Eur. Heart. J. 19:293–300

    Article  PubMed  CAS  Google Scholar 

  80. Harrild DM, Henriquez CS (2000) A computer model of normal conduction in the human atria. Circ Res 87:e25–e36

    Article  PubMed  CAS  Google Scholar 

  81. Hassink RJ, Aretz HT, Ruskin J, Keane D (2003) Morphology of atrial myocardium in human pulmonary veins: a postmortem analysis in patients with and without atrial fibrillation. J Am Coll Cardiol 42:1108–1114

    Article  PubMed  Google Scholar 

  82. Henriquez CS (1993) Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng 21:1–77

    PubMed  CAS  Google Scholar 

  83. Hermosillo BDF (2008) Semi-automatic enhancement of atrial models to include atrial architecture and patient specific data: for biophysical simulations. In: Proceedings of computers in cardiology. vol 35, pp 633–636

  84. Ho SY, Anderson RH, Sánchez-Quintana D (2002) Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc Res 54:325–336

    Article  PubMed  CAS  Google Scholar 

  85. Ho SY, Becker AE (2008) Anatomy of electrophysiology. In: Fuster V, Hurst JW, O’Rourke RA, Walsh RA, King SB, Poole-Wilson PA (eds) The Heart. 12th edn

  86. Ho SY, Cabrera JA, Tran VH, Farre J, Anderson RH, Sanchez-Quintana D (2001) Architecture of the pulmonary veins: relevance to radiofrequency ablation. Heart 86:265–270

    Article  PubMed  CAS  Google Scholar 

  87. Ho SY, Sanchez-Quintana D (2008) The importance of atrial structure and fibers. Clin Anat 22:52–63

    Article  Google Scholar 

  88. Ho SY, Sanchez-Quintana D, Cabrera JA, Anderson RH (1999) Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J Cardiovasc Electrophysiol 10:1525–1533

    Article  PubMed  CAS  Google Scholar 

  89. Hocini M, Ho SY, Kawara T, Linnenbank AC, Potse M, Shah D, Jais P, Janse MJ, Haissaguerre M, De Bakker JM (2002) Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation. Circulation 105:2442–2448

    Article  PubMed  Google Scholar 

  90. Hocini M, Loh P, Ho SY, Sanchez-Quintana D, Thibault B, de Bakker JM, Janse MJ (1998) Anisotropic conduction in the triangle of Koch of mammalian hearts: electrophysiologic and anatomic correlations. J Am Coll Cardiol 31:629–636

    Article  PubMed  CAS  Google Scholar 

  91. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  92. Holmqvist F, Carlson J, Platonov PG (2009) Detailed ECG analysis of atrial repolarization in humans. Ann Noninvasive Electrocardiol 14:13–18

    Article  PubMed  Google Scholar 

  93. Holmqvist F, Husser D, Tapanainen JM, Carlson J, Jurkko R, Xia Y, Havmoller R, Kongstad O, Toivonen L, Olsson SB, Platonov PG (2008) Interatrial conduction can be ACCurately determined using standard 12-lead electrocardiography: validation of P-wave morphology using electroanatomic mapping in man. Heart Rhythm 5:413–418

    Article  PubMed  Google Scholar 

  94. Ionasec R, Voigt I, Mihalef V, Grbic S, Vitanovski D, Wang Y, Zheng Y, Hornegger J, Navab N, Georgescu B, Comaniciu D (2010) Patient-specific modeling of the heart: Applications to cardiovascular disease management. In: Camara O, Pop M, Rhode K Sermesant M, Smith N, Young A (eds) Statistical Atlases and Computational Models of the Heart 2010 Lecture Notes in Computer Science vol. 6364, Springer, Berlin, pp 14–24

  95. Jacquemet V (2011) An eikonal-diffusion solver and its application to the interpolation and the simulation of reentrant cardiac activations. Computer Methods and Programs in Biomedicine

  96. Jacquemet V, Henriquez CS (2009) Genesis of complex fractionated atrial electrograms in zones of slow conduction: a computer model of microfibrosis. Heart Rhythm 6:803–810

    Article  PubMed  Google Scholar 

  97. Jacquemet V, Kappenberger L, Henriquez CS (2008) Modeling atrial arrhythmias: Impact on clinical diagnosis and therapies. IEEE Rev Biomed Eng 1:94–114

    Article  PubMed  Google Scholar 

  98. Jacquemet V, Lemay M, van Oosterom A, Kappenberger L (2006) The equivalent dipole used to characterize atrial fibrillation. In: Proceedings of computers in cardiology. vol 33, pp 149–152, IEEE 17–20 Sept, Valencia

  99. Jacquemet V, van Oosterom A, Vesin JM, Kappenberger L (2006) Analysis of electrocardiograms during atrial fibrillation. A biophysical model approach. IEEE Eng Med Biol Mag 25:79–88

    Article  PubMed  Google Scholar 

  100. Jacquemet V, Virag N, Ihara Z, Dang L, Blanc O, Zozor S, Vesin JM, Kappenberger L, Henriquez C (2003) Study of unipolar electrogram morphology in a computer model of atrial fibrillation. J Cardiovasc Electrophysiol 14:S172–S179

    Article  PubMed  Google Scholar 

  101. Jernigan SR, Buckner GD, Eischen JW, Cormier DR (2007) Finite element modeling of the left atrium to facilitate the design of an endoscopic atrial retractor. J Biomech Eng 129:825–837

    Article  PubMed  CAS  Google Scholar 

  102. Jongbloed MRM, Lamb HJ, Bax JJ, Schuijf JD, de Roos A, van der Wall EE, Schalij MJ (2005) Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol 45:749–753

    Article  PubMed  Google Scholar 

  103. Kafer CJ (1991) Internodal pathways in the human atria: a model study. Comp Biomed Res 24:549–563

    Article  CAS  Google Scholar 

  104. Kalifa J, Klos M, Zlochiver S, Mironov S, Tanaka K, Ulahannan N, Yamazaki M, Jalife J, Berenfeld O (2007) Endoscopic fluorescence mapping of the left atrium: a novel experimental approach for high resolution endocardial mapping in the intact heart. Heart Rhythm 4:916–924

    Article  PubMed  Google Scholar 

  105. Kanagaratnam P, Rothery S, Patel P, Severs NJ, Peters, NS (2002) Relative expression of immunolocalized connexins 40 and 43 correlates with human atrial conduction properties. J Am Coll Cardiol 39:116–123

    Article  PubMed  CAS  Google Scholar 

  106. Kaseno K, Tada H, Koyama K, Jingu M, Hiramatsu S, Yokokawa M, Goto K, Naito S, Oshima S, Taniguchi K (2008) Prevalence and characterization of pulmonary vein variants in patients with atrial fibrillation determined using 3-dimensional computed tomography. Am J Cardiol 101:1638–1642

    Article  PubMed  Google Scholar 

  107. Kato R, Lickfett L, Meininger G, Dickfeld T, Wu R, Juang G, Angkeow P, LaCorte J, Bluemke D, Berger R, Halperin HR, Calkins H (2003) Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation 107:2004–2010

    Article  PubMed  Google Scholar 

  108. Keith A, Flack MW (1907) The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J Anat Physiol 41:172–189

    PubMed  CAS  Google Scholar 

  109. Keller DUJ, Weber FM, Seemann G, Dössel O (2010) Ranking the influence of tissue conductivities on forward-calculated ECGs. IEEE Trans Biomed Eng 57:1568–1576

    Article  PubMed  Google Scholar 

  110. Kharche S, Seemann G, Margetts L, Leng J, Holden AV, Zhang H (2008) Simulation of clinical electrophysiology in 3D human atria: a high-performance computing and high-performance visualization application. Concurr Comput Pract Experience 20:1317–1328

    Article  Google Scholar 

  111. Kim BS, Kim YH, Hwang GS, Pak HN, Lee SC, Shim, WJ, Oh DJ, Ro YM (2002) Action potential duration restitution kinetics in human atrial fibrillation. J Am Coll Cardiol 39:1329–1336

    Article  PubMed  Google Scholar 

  112. Kleber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84:431–488

    Article  PubMed  CAS  Google Scholar 

  113. Kneller J, Ramirez RJ, Chartier D, Courtemanche M, Nattel S (2002) Time-dependent transients in an ionically based mathematical model of the canine atrial action potential. Am J Physiol Heart Circ Physiol 282:H1437–H1451

    PubMed  CAS  Google Scholar 

  114. Kneller J, Zou R, Vigmond EJ, Wang Z, Leon LJ, Nattel S (2002) Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties. Circ Res 90:73

    Article  CAS  Google Scholar 

  115. Knight BP, Gersh BJ, Carlson MD, Friedman PA, McNamara RL, Strickberger SA, Tse HF, Waldo AL (2005) Role of permanent pacing to prevent atrial fibrillation: science advisory from the American Heart Association Council on Clinical Cardiology (Subcommittee on Electrocardiography and Arrhythmias) and the Quality of Care and Outcomes Research Interdisciplinary Working Group in collaboration with the Heart Rhythm Society. Circulation 111:240–243

    Article  PubMed  Google Scholar 

  116. Knowles BR, Caulfield D, Cooklin M, Rinaldi CA, Gill, J, Bostock J, Razavi R, Schaeffter T, Rhode KS (2010) 3-D visualization of acute RF ablation lesions using MRI for the simultaneous determination of the patterns of necrosis and edema. IEEE Trans Biomed Eng 57:1467–1475

    Article  PubMed  Google Scholar 

  117. Kohl P, Camelliti P, Burton FL, Smith GL (2005) Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. J Electrocardiol 38:45–50

    Article  PubMed  Google Scholar 

  118. Kohl P, Noble D, Winslow RL, Hunter PJ (2000) Computational modelling of biological systems: tools and visions. Phil Trans R Soc Lond A 358:579–610

    Article  CAS  Google Scholar 

  119. Koivumaeki JT, Korhonen T, Tavi P (2011) Impact of sarcoplasmic reticulum calcium release on calcium dynamics and action potential morphology in human atrial myocytes: a computational study. PLoS Comput Biol 7:e1001067

    Article  CAS  Google Scholar 

  120. Kojodjojo P, Kanagaratnam P, Markides V, Davies DW, Peters N (2006) Age-related changes in human left and right atrial conduction. J Cardiovasc Electrophysiol 17:120–127

    Article  PubMed  Google Scholar 

  121. Kojodjojo P, Peters NS, Davies DW, Kanagaratnam P (2007) Characterization of the electroanatomical substrate in human atrial fibrillation: the relationship between changes in atrial volume, refractoriness, wavefront propagation velocities, and AF burden. J Cardiovasc Electrophysiol 18:269–275

    Article  PubMed  Google Scholar 

  122. Konukoglu E, Relan J, Cilingir U, Menze BH, Chinchapatnam P, Jadidi A, Cochet H, Hocini M, Delingette H, Jais P, Haissaguerre M, Ayache N, Sermesant M (2011) Efficient probabilistic model personalization integrating uncertainty on data and parameters: Application to eikonal-diffusion models in cardiac electrophysiology. Prog Biophys Mol Biol 107:134–146

    Article  PubMed  Google Scholar 

  123. Krueger MW, Rhode K, Weber FM, Keller DUJ, Caulfield D, Seemann G, Knowles BR, Razavi R, Dössel O (2010) Patient-specific volumetric atrial models with electrophysiological components: A comparison of simulations and measurements. Biomed Eng 55(s1):54–57

    Google Scholar 

  124. Krueger MW, Schmidt V, Tobón C, Weber FM, Lorenz, C, Keller DUJ, Barschdorf H, Burdumy M, Neher P, Plank, G, Rhode K, Seemann G, Sanchez-Quintana D, Saiz J, Razavi, R, Dössel O (2011) Modeling atrial fiber orientation in patient-specific geometries: a semi-automatic rule-based approach. In: Axel L, Metaxas D (eds) Functional Imaging and Modeling of the Heart 2011 Lecture Notes in Computer Science, vol 6666, pp 223–232

  125. Krueger MW, Severi S, Rhode K, Genovesi S, Weber FM, Vincenti A, Fabbrini P, Seemann G, Razavi R, Dössel O (2011) Alterations of atrial electrophysiology related to hemodialysis session: insights from a multiscale computer model. J Electrocardiol 44:176–183

    Article  PubMed  Google Scholar 

  126. Krueger MW, Weber FM, Seemann G, Dössel O (2009) Semi-automatic segmentation of sinus node, Bachmann’s Bundle and Terminal Crest for patient specific atrial models. In: World congress on medical physics and biomedical engineering. IFMBE Proceedings, vol 25/4, pp 673–676 Springer, Heidelberg

  127. Kuijpers NHL, Potse M, van Dam PM, ten Eikelder HMM, Verheule S, Prinzen FW, Schotten U (2011) Mechanoelectrical coupling enhances initiation and affects perpetuation of atrial fibrillation during acute atrial dilation. Heart Rhythm 8:429–436

    Article  PubMed  Google Scholar 

  128. Kuijpers NHL, Rijken RJ, ten Eikelder HMM, Hilbers PAJ (2007) Vulnerability to atrial fibrillation under stretch can be explained by stretch-activated channels. In: Proceedings of computers in cardiology. vol 34, pp 237–240

  129. Lakatta E, Maltsev V (2012) Rebuttal: what I f the shoe doesn’t fit? “The funny current has a major pacemaking role in the sinus node”. Heart Rhythm 9:459–460

    Article  PubMed  Google Scholar 

  130. Lemery R, Guiraudon G, Veinot JP (2003) Anatomic description of Bachmann’s bundle and its relation to the atrial septum. Am J Cardiol 91:1482–1485A8

    Article  PubMed  Google Scholar 

  131. Lemery R, Soucie L, Martin B, Tang ASL, Green M, Healey J (2004) Human study of biatrial electrical coupling: determinants of endocardial septal activation and conduction over interatrial connections. Circulation 110:2083–2089

    Article  PubMed  Google Scholar 

  132. Lesh MD, Kalman JM, Olgin JE, Ellis WS (1996) The role of atrial anatomy in clinical atrial arrhythmias. J Electrocardiol 29 (Suppl):101–113

    Article  PubMed  Google Scholar 

  133. Li D, Li CY, Yong AC, Johnston PR, Kilpatrick D (1999) Epicardial ST depression in acute myocardial infarction. Circ Res 85:959–964

    Article  PubMed  CAS  Google Scholar 

  134. Li D, Zhang L, Kneller J, Nattel S (2001) Potential ionic mechanism for repolarization differences between canine right and left atrium. Circ Res 88:1168–1175

    Article  PubMed  CAS  Google Scholar 

  135. Lian J, Li G, Cheng J, Avitall B, He B (2002) Body surface Laplacian mapping of atrial depolarization in healthy human subjects. Med Biol Eng Comput 40:650–659

    Article  PubMed  CAS  Google Scholar 

  136. Lin SF, Wikswo JP (1999) Panoramic optical imaging of electrical propagation in isolated heart. J Biomed Optics 4:200–207

    Article  Google Scholar 

  137. Lin WS, Prakash VS, Tai CT, Hsieh MH, Tsai CF, Yu WC, Lin YK, Ding YA, Chang MS, Chen SA (2000) Pulmonary vein morphology in patients with paroxysmal atrial fibrillation initiated by ectopic beats originating from the pulmonary veins: implications for catheter ablation. Circulation 101:1274–1281

    Article  PubMed  CAS  Google Scholar 

  138. Lindblad DS, Murphey CR, Clark JW, Giles WR (1996) A model of the action potential and underlying membrane currents in a rabbit atrial cell. Am J Physiol 271:1666

    Google Scholar 

  139. Lines GT, MacLachlan MC, Linge S, Tveito A (2009) Synchronizing computer simulations with measurement data for a case of atrial flutter. Ann Biomed Eng 37:1287–1293

    Article  PubMed  Google Scholar 

  140. Lombaert H, Peyrat JM, Croisille P, Rapacchi S, Fanton L, Clarysse P, Delingette H, Ayache N (2011) Statistical analysis of the human cardiac fiber architecture from DT-MRI. In: D. Metaxas L. Axel (eds) Functional Imaging and Modeling of the Heart, Lecture Notes in Computer Science. vol 6666, pp 171–179, Springer, Berlin

  141. Lorange M, Gulrajani RM (1993) A computer heart model incorporating anisotropic propagation. i. model construction and simulation of normal activation. J Electrocardiol 26:245–261

    Article  PubMed  CAS  Google Scholar 

  142. Lu W, Zhu X, Chen W, Wei D (2011) A computer model based on real anatomy for electrophysiology study. Adv Eng Softw 42:463–476

    Article  Google Scholar 

  143. Luo CH, Rudy Y (1991) A model of the ventricular cardiac action potential. Depolarization repolarization and their interaction. Circ Res 68:1501–1526

    Article  PubMed  CAS  Google Scholar 

  144. Luo CH, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentraion changes. Circ Res 74:1071–1096

    Article  PubMed  CAS  Google Scholar 

  145. Luther S, Fenton FH, Kornreich BG, Squires A, Bittihn P, Hornung D, Zabel M, Flanders J, Gladuli A, Campoy L, Cherry EM, Luther G, Hasenfuss G, Krinsky VI, Pumir A, Gilmour RFJ, Bodenschatz E (2011) Low-energy control of electrical turbulence in the heart. Nature 475: 235–239

    Article  PubMed  CAS  Google Scholar 

  146. MacLeod RS, Kholmovski E, DiBella EVR, Oakes RS, Blauer JE, Fish E, Vijayakumar S, Daccarett M, Segerson, NM, Marrouche NF (2008) Integration of MRI in evaluation and ablation of atrial fibrillation. In: Proceedings of Computers in Cardiology. vol 35, pp 77–80

  147. Maleckar MM, Greenstein JL, Giles WR, Trayanova NA (2009) Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization. Biophys J 97:2179–2190

    Article  PubMed  CAS  Google Scholar 

  148. Maleckar MM, Greenstein JL, Trayanova NA, Giles WR (2008) Mathematical simulations of ligand-gated and cell-type specific effects on the action potential of human atrium. Prog Biophy Mol Biol 98:161–170

    Article  CAS  Google Scholar 

  149. Mansour M, Holmvang G, Sosnovik D, Migrino R, Abbara S, Ruskin J, Keane D (2004) Assessment of pulmonary vein anatomic variability by magnetic resonance imaging: implications for catheter ablation techniques for atrial fibrillation. J Cardiovasc Electrophysiol 15:387–393

    Article  PubMed  Google Scholar 

  150. Manzke R, Meyer C, Ecabert O, Peters J, Noordhoek NJ, Thiagalingam A, Reddy VY, Chan RC, Weese J (2010) Automatic segmentation of rotational X-ray images for anatomic intra-procedural surface generation in atrial fibrillation ablation procedures. IEEE Trans Med Imag 29:260–272

    Article  Google Scholar 

  151. Markides V, Schilling RJ, Ho SY, Chow AWC, Davies DW, Peters NS (2003) Characterization of left atrial activation in the intact human heart. Circulation 107:733–739

    Article  PubMed  Google Scholar 

  152. Marom EM, Herndon JE, Kim YH, McAdams HP (2004) Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology 230:824–829

    Article  PubMed  Google Scholar 

  153. Mase M, Del Greco M, Marini M, Ravelli F (2004) Velocity field analysis of activation maps in atrial fibrillation : a simulation study. In: IFMBE Proceedings world congress on medical physics and biomedical engineering, vol 25/4, pp 1014–1017

  154. Mase M, Ravelli F (2010) Automatic reconstruction of activation and velocity maps from electro-anatomic data by radial basis functions. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, vol 2010, pp 2608–2611

  155. McPate MJ, Duncan RS, Milnes JT, Witchel HJ, Hancox JC (2005) The N588K-HERG K+ channel mutation in the “short QT syndrome”: mechanism of gain-in-function determined at 37 degrees C. Biochem Biophy Res Commun 334:441–449

    Article  CAS  Google Scholar 

  156. Mihalef V, Ionasec RI, Sharma P, Georgescu B, Voigt I, Suehling M, Comaniciu D (2011) Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images. Interface Focus 1:286–296

    Article  PubMed  Google Scholar 

  157. Millar CK, Kralios FA, Lux RL (1985) Correlation between refractory periods and activation-recovery intervals from electrograms: effects of rate and adrenergic interventions. Circulation 72:1372–1379

    Article  PubMed  CAS  Google Scholar 

  158. Mirvis DM (1980) Body surface distribution of electrical potential during atrial depolarization and repolarization. Circulation 62:167–173

    Article  PubMed  CAS  Google Scholar 

  159. Mlcochova H, Tintera J, Porod V, Peichl P, Cihak R, Kautzner J (2005) Magnetic resonance angiography of pulmonary veins: implications for catheter ablation of atrial fibrillation. Pacing Clin Electrophysiol 28:1073–1080

    Article  PubMed  Google Scholar 

  160. Moe GK, Rheinboldt WC, Abildskov JA (1964) A computer model of atrial fibrillation. Am Heart J 67:200–220

    Article  PubMed  CAS  Google Scholar 

  161. Nathan H, Eliakim M (1966) The junction between the left atrium and the pulmonary veins. An anatomic study of human hearts. Circulation 34:412–422

    Article  PubMed  CAS  Google Scholar 

  162. Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226

    Article  PubMed  CAS  Google Scholar 

  163. Navoret N, Xu B, Jacquir S, Binczak S (2010) Comparison of complex fractionated atrial electrograms at cellular scale using numerical and experimental models. In: Engineering in medicine and biology society (EMBC), 2010 Annual International Conference of the IEEE, vol 2010, pp 3249–3252

  164. Ndrepepa G, Estner H (2006) Ablation of cardiac arrhythmias energy sources and mechanisms of lesion formation. In: Schmitt C, Deisenhofer I, Zrenner B (eds) Catheter ablation of cardiac arrhythmias, Steinkopff, pp 35–53

  165. Neher P, Barschdorf H, Dries S, Weber FM, Krueger MW, Dössel O, Lorenz C (2011) Automatic segmentation of cardiac CTs— personalized atrial models augmented with electrophysiological structures. In: Functional Imaging and Modeling of the Heart 2011 Lecture Notes in Computer Science, vol 6666, pp 80–87

  166. Noble D (2002) Modeling the heart: from genes to cells to the whole organ. Science 295:1678–1682

    Article  PubMed  CAS  Google Scholar 

  167. Noble D (2008) Computational models of the heart and their use in assessing the actions of drugs. J Pharm Sci 107:107–117

    Article  CAS  Google Scholar 

  168. Nygren A, Fiset C, Firek L, Clark JW, Lindblad DS, Clark RB, Giles WR (1998) Mathematical model of a adult human atrial cell. The role of K+ currents in repolarization. Circ Res 82:63–81

    Article  PubMed  CAS  Google Scholar 

  169. Nygren A, Leon LJ, Giles WR (2001) Simulations of the human atrial action potential. Philos Trans Roy Soc Lond 359:1111–1125

    Article  CAS  Google Scholar 

  170. Oakes RS, Badger TJ, Kholmovski EG, Akoum N, Burgon NS, Fish EN, Blauer JJE, Rao SN, DiBella EVR, Segerson NM, Daccarett M, Windfelder J, McGann CJ, Parker D, MacLeod RS, Marrouche NF (2009) Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation 119:1758–1767

    Article  PubMed  Google Scholar 

  171. van Oosterom A, Jacquemet V (2005) Genesis of the P wave: atrial signals as generated by the equivalent double layer source model. Europace 7 (Suppl 2):21–29

    Article  PubMed  Google Scholar 

  172. van Oosterom A, Jacquemet V (2009) Ensuring stability in models of atrial kinetics. In: Proceedings of computers in cardiology 2009, pp 69–72

  173. Ordas S, Oubel E, Sebastian R, Frangi A (2007) Computational anatomy atlas of the heart. In: Proceedings of fifth international symposium of image and signal processing and analysis, pp 338–342

  174. Otomo K, Uno K, Fujiwara H, Isobe M, Iesaka Y (2010) Local unipolar and bipolar electrogram criteria for evaluating the transmurality of atrial ablation lesions at different catheter orientations relative to the endocardial surface. Heart Rhythm 7:1291–1300

    Article  PubMed  Google Scholar 

  175. Papez JW (1920) Heart musculature of the atria. Am J Anat 27:255–286

    Article  Google Scholar 

  176. Perez FJ, Wood MA, Schubert CM (2006) Effects of gap geometry on conduction through discontinuous radiofrequency lesions. Circulation 113:1723–1729

    Article  PubMed  Google Scholar 

  177. Plank G, Prassl A, Hofer E, Trayanova NA (2008) Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions. Biophys J 94:1904–1915

    Article  PubMed  CAS  Google Scholar 

  178. Plank G, Prassl AJ, Wang JI, Seemann G, Scherr D, Sanchez-Quintana D, Calkins H, Trayanova NA (2008) Atrial fibrosis promotes the transistion of pulmonary vein ectopy into reentrant arrhythmias. Heart Rhythm

  179. Platonov PG (2007) Interatrial conduction in the mechanisms of atrial fibrillation: from anatomy to cardiac signals and new treatment modalities. Europace 9 (Suppl 6):vi10–vi16

    Article  PubMed  Google Scholar 

  180. Platonov PG, Ivanov V, Ho SY, Mitrofanova L (2008) Left atrial posterior wall thickness in patients with and without atrial fibrillation: data from 298 consecutive autopsies. J Cardiovasc Electrophysiol 19:689–692

    Article  PubMed  Google Scholar 

  181. Ponto S, Schilling C, Krueger MW, Weber FM, Seemann S, Dössel O (2011) Influence of endocardial catheter contact on properties of the atrial signal and comparison with simulated electrograms. Biomed Tech 56(s1)

  182. Pop M, Sermesant M, Peyratt JM, Crystal E, Dick AJ, Wright GA (2010) Anatomic reentry: Insights from a parametric study in a simple 3D anisotropic wedge model. Int J Bioelectromag 12:133–151

    Google Scholar 

  183. Pritchett AM, Jacobsen SJ, Mahoney DW, Rodeheffer RJ, Bailey KR, Redfield MM (2003) Left atrial volume as an index of left atrial size: a population-based study. J Am Coll Cardiol 41:1036–1043

    Article  PubMed  Google Scholar 

  184. Pullan AJ, Buist ML, Cheng LK (2005) Mathematically modelling the electrical activity of the heart: from cell to body surface and back again. World Scientific, Singapore

  185. Qu Z, Weiss JN, Garfinkel A (2000) From local to global spatiotemporal chaos in a cardiac tissue model. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 61:727–732

    Article  PubMed  CAS  Google Scholar 

  186. Ramirez RJ, Nattel S, Courtemanche M (2000) Mathematical analysis of canine atrial action potentials: rate regional factors and electrical remodeling. Am J Physiol Heart Circ Physiol 279:H1767–H1785

    PubMed  CAS  Google Scholar 

  187. Ranjan R, Kato R, Zviman MM, Dickfeld TM, Roguin A, Berger RD, Tomaselli GF, Halperin HR (2011) Gaps in the ablation line as a potential cause of recovery from electrical isolation and their visualization using MRI. Circ Arrhythmia Electrophysiol

  188. Reumann M, Bohnert J, Seemann G, Osswald B, Dössel O (2008) Preventive ablation strategies in a biophysical model of atrial fibrillation based on realistic anatomical data. IEEE Trans Biomed Eng 55:399–406

    Article  PubMed  Google Scholar 

  189. Richter U, Faes L, Cristoforetti A, Mase M, Ravelli F, Stridh M, Sornmo L (2011) A novel approach to propagation pattern analysis in intracardiac atrial fibrillation signals. Ann Biomed Eng 39:310–323

    Article  PubMed  Google Scholar 

  190. Ridler M, McQueen D, Peskin C, Vigmond E (2006) Action potential duration gradient protects the right atrium from fibrillating. In: Engineering in Medicine and Biology Society 2006. EMBS’06 28th annual international conference of the IEEE, pp 3978–3981

  191. Ridler M.E, Lee M, McQueen D, Peskin C, Vigmond E (2011) Arrhythmogenic consequences of action potential duration gradients in the atria. Can J Cardiol 27:112–119

    Article  PubMed  Google Scholar 

  192. Rodriguez B, Burrage K, Gavaghan D, Grau V, Kohl P, Noble D (2010) The systems biology approach to drug development: application to toxicity assessment of cardiac drugs. Clin Pharmacol Therapeutics 88:130–134

    Article  CAS  Google Scholar 

  193. Rogers JM, McCulloch AD (1994) A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans Biomed Eng 41:743–757

    Article  PubMed  CAS  Google Scholar 

  194. Rostock T, Steven D, Lutomsky B, Servatius H, Drewitz I, Klemm H, Mullerleile K, Ventura R, Meinertz T, Willems S (2008) Atrial fibrillation begets atrial fibrillation in the pulmonary veins: on the impact of atrial fibrillation on the electrophysiological properties of the pulmonary veins in humans. J Am Coll Cardiol 51:2153–2160

    Article  PubMed  Google Scholar 

  195. Rotter M, Dang L, Jacquemet V, Virag N, Kappenberger L, Haissaguerre M (2007) Impact of varying ablation patterns in a simulation model of persistent atrial fibrillation. Pacing Clin Electrophysiol 30:314–321

    Article  Google Scholar 

  196. Ruchat P, Dang L, Schlaepfer J, Virag N, von Segesser LK, Kappenberger L (2007) Use of a biophysical model of atrial fibrillation in the interpretation of the outcome of surgical ablation procedures. Eur J Cardio Thorac Surg 32:90–95

    Article  Google Scholar 

  197. Ruchat P, Dang L, Virag N, Schlaepfer J, von Segesser LK, Kappenberger L (2007) A biophysical model of atrial fibrillation to define the appropriate ablation pattern in modified maze. Eur J Cardio Thorac Surg 31:65–69

    Article  Google Scholar 

  198. Ruiz-Villa CA, Tobon C, Rodriguez JF, Ferrero JM, Hornero F, Saiz J (2009) Influence of atrial dilatation in the generation of re-entries caused by ectopic activity in the left atrium. In: Proceedings of computers in cardiology. vol 36, pp 457–460

  199. Correa de Sa DD, Thompson N, Stinnett-Donnelly J, Znojkiewicz P, Habel N, Muller JG, Bates JH, Buzas JS, Spector PS (2011) Electrogram fractionation: the relationship between spatio-temporal variation of tissue excitation and electrode spatial resolution. Circulation. Arrhythmia Electrophysiol 4(6):909–916

    Google Scholar 

  200. Sachse FB, Frech R, Werner CD, Dössel O (1999) A model based approach to assignment of myocardial fibre orientation. In: Proceedings of computers in cardiology. vol 26, pp 145–148, Hannover

  201. Saffitz JE, Kanter HL, Green KG, Tolley TK, Beyer EC (1994) Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ Res 74:1065–1070

    Article  PubMed  CAS  Google Scholar 

  202. Saito T, Waki K, Becker A.E (2000) Left atrial myocardial extension onto pulmonary veins in humans: anatomic observations relevant for atrial arrhythmias. J Cardiovasc Electrophysiol 11:888–894

    Article  PubMed  CAS  Google Scholar 

  203. Sakamoto SI, Nitta T, Ishii Y, Miyagi Y, Ohmori H, Shimizu K (2005) Interatrial electrical connections: the precise location and preferential conduction. J Cardiovasc Electrophysiol 16:1077–1086

    Article  PubMed  Google Scholar 

  204. Sánchez C, Corrias A, Laguna P, Davies M, Swinton J, Jacobson I, Pueyo E, Rodriguez B (2010) Potential pharmacological therapies for atrial fibrillation. A computational study. In: Proceedings of computing in cardiology. vol 37, pp 413–416, IEEE 26–29 Sept 2010, Belfast

  205. Sanchez-Quintana D, Anderson RH, Cabrera JA, Climent V, Martin R, Farre J, Ho SY (2002) The terminal crest: morphological features relevant to electrophysiology. Heart 88:406–411

    Article  PubMed  CAS  Google Scholar 

  206. Sanchez-Quintana D, Cabrera JA, Climent V, Anderson RH, Ho SY (2005) Sinus node revisited in the era of electroanatomical mapping and catheter ablation. Heart 91:189–194

    Article  PubMed  CAS  Google Scholar 

  207. Sanchez-Quintana D, Cabrera JA, Climent V, Farre J, Mendonca MCd, Ho SY (2005) Anatomic relations between the esophagus and left atrium and relevance for ablation of atrial fibrillation. Circulation 112:1400–1405

    Article  PubMed  Google Scholar 

  208. Saremi F, Channual S, Krishnan S, Gurudevan SV, Narula J, Abolhoda A (2008) Bachmann bundle and its arterial supply: imaging with multidetector CT–implications for interatrial conduction abnormalities and arrhythmias. Radiology 248:447–457

    Article  PubMed  Google Scholar 

  209. Saremi F, Krishnan S (2007) Cardiac conduction system: anatomic landmarks relevant to interventional electrophysiologic techniques demonstrated with 64-detector CT. Radiographics 27:1539–1565

    Article  PubMed  Google Scholar 

  210. Sassi R, Corino VDA, Mainardi LT (2009) Analysis of surface atrial signals: time series with missing data? Ann Biomed Eng 37:2082–2092

    Article  PubMed  Google Scholar 

  211. Sawa A, Shimizu A, Ueyama T, Yoshiga Y, Suzuki S, Sugi N, Oono M, Oomiya T, Matsuzaki M (2008) Activation patterns and conduction velocity in posterolateral right atrium during typical atrial flutter using an electroanatomic mapping system. Circ J 72:384–391

    Article  PubMed  Google Scholar 

  212. Schilling RJ, Peters NS, Goldberger J, Kadish AH, Davies DW (2001) Characterization of the anatomy and conduction velocities of the human right atrial flutter circuit determined by noncontact mapping. J Am Coll Cardiol 38:385–393

    Article  PubMed  CAS  Google Scholar 

  213. Schmitt C, Deisenhofer I, Zrenner B (eds) (2006) Catheter ablation of cardiac arrhythmias: a practical approach. Springer

  214. Schotten U, Neuberger HR, Allessie MA (2003) The role of atrial dilatation in the domestication of atrial fibrillation. Prog Biophys Mol Biol 82:151–162

    Article  PubMed  Google Scholar 

  215. Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91:265–325

    Article  PubMed  Google Scholar 

  216. Schuster HP, Trappe HJ (2005) EKG-Kurs für Isabel. Georg Thieme Verlag, Stuttgart

  217. Seemann G, Carillo P, Weiss DL, Krueger MW, Dössel O, Scholz EP (2009) Investigating arrhythmogenic effects of the hERG mutation N588K in virtual human atria. In: Ayache N, Delingette H, Sermesant M (eds) Lecture Notes in Computer Science, vol 5528, pp 144–153

  218. Seemann G, Carrillo Bustamante P, Ponto S, Wilhelms M, Scholz EP, Dössel O (2010) Atrial fibrillation-based electrical remodeling in a computer model of the human atrium. In: Proceedings of computing in cardiology 37, pp 417–420

  219. Seemann G, Höper C, Sachse FB, Dössel O, Holden AV, Zhang H (2006) Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Phil Trans Roy Soc A 364:1465–1481

    Article  CAS  Google Scholar 

  220. Seemann G, Weiß DL, Sachse FB, Dössel O (2004) Familial atrial fibrillation: simulation of the mechanisms and effects of a slow rectifier potassium channel mutation in human atrial tissue. In: Proceedings of computers in cardiology. vol 31, pp 125–128

  221. Severi S, Pogliani D, Fantini G, Fabbrini P, Viganò MR, Galbiati E, Bonforte G, Vincenti A, Stella A, Genovesi S (2010) Alterations of atrial electrophysiology induced by electrolyte variations: combined computational and P-wave analysis. Europace

  222. Shah DC, Jais P, Haissaguerre M, Chouairi S, Takahashi A, Hocini M, Garrigue S, Clementy J (1997) Three-dimensional mapping of the common atrial flutter circuit in the right atrium. Circulation 96:3904–3912

    Article  PubMed  CAS  Google Scholar 

  223. Shenasa M, Hindricks G, Borggrefe M, Breithardt G (2009) Cardiac Mapping.

  224. SippensGroenewegen A, Peeters HA, Jessurun ER, Linnenbank AC, Robles de Medina EO, Lesh MD, van Hemel NM (1998) Body surface mapping during pacing at multiple sites in the human atrium: P-wave morphology of ectopic right atrial activation. Circulation 97:369–380

    Article  PubMed  CAS  Google Scholar 

  225. Smaill BH, Hunter PJ (2010) Computer modeling of electrical activation: from cellular dynamics to the whole heart In: Cardiac electrophysiology methods and models, Springer, pp 159–185

  226. Smith N, de Vecchi A, McCormick M, Camara O, Frangi AF, Delingette H, Sermesant M, Ayache N, Krueger MW, Schulze WHW, Hose R, Valverde I, Beerbaum P, Staicu C, Siebes M, Spaan J, Hunter P, Weese J, Lehmann H, Chapelle D, Rezavi R (2011) euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. J Roc Soc Interface

  227. Spach M, Dolber PC, Heidlage JF (1988) Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle: a model of reentry based on anisotropic discontinuous propagation. Circ Res 62:811–832

    Article  PubMed  CAS  Google Scholar 

  228. Stöllberger C, Ernst G, Bonner E, Finsterer J, Slany J (2003) Left atrial appendage morphology: Comparison of transesophageal images and postmortem casts. Springer Berlin / Heidelberg Zeitschrift für Kardiologie

  229. Sunderman FW (1949) Anatomical normals. In: Normal values in clinical medicine. WB Saunders Co.

  230. Syed Z, Vigmond E, Nattel S, Leon L (2005) Atrial cell action potential parameter fitting using genetic algorithms. Med Biol Eng Comput 43:561–571

    Article  PubMed  CAS  Google Scholar 

  231. Thomas SP, Wallace EM, Ross DL (2000) The effect of a residual isthmus of surviving tissue on conduction after linear ablation in atrial myocardium. J Interv Cardiac Electrophysiol 4:273–281

    Article  CAS  Google Scholar 

  232. Tilg B, Fischer G, Modre R, Hanser F, Messnarz B, Schocke M, Kremser C, Berger T, Hintringer F, Roithinger FX (2002) Model-based imaging of cardiac electrical excitation in humans. IEEE Trans Med Imag 21:1031–1039

    Article  Google Scholar 

  233. Tobón C, Ruiz C, Heidenreich E, Hornero F, Sáiz J (2009) Effect of the ectopic beats location on vulnerability to reentries in a three-dimensional realistic model of human atria. In: Proceedings of computers in cardiology. vol 36, pp 449–452

  234. Tobón C, Ruiz C, Rodriguez JF, Hornero F, Ferrero JM, Saiz J (2010) A biophysical model of atrial fibrillation to simulate the Maze III ablation pattern. In: Proceedings of computers in cardiology. vol 37, pp 621–624

  235. Tobón C, Ruiz C, Rodriguez JF, Hornero F, Ferrero JM, Saiz J (2010) Vulnerability for reentry in a three dimensional model of human atria: a simulation study. In: Engineering in medicine and biology society (EMBC) 2010 annual international conference of the IEEE, pp 224–227

  236. Tobón C, Ruiz C, Sáiz J, Heidenreich E, Hornero F (2008) Reentrant mechanisms triggered by ectopic activity in a three-dimensional realistic model of human atrium. A computer simulation study. In: Proceedings of computers in cardiology. vol 35, pp 629–632

  237. Tobón C, Sáiz J, Hornero F, Ruiz C, Hernándes V, Molto G (2006) Contribution of electrophysiological remodelling to generation of anatomical re-entries around the right pulmonary veins in human atrium: a simulation study. In: Proceedings of computers in cardiology. vol 33, pp 773–776

  238. Toussaint N, Sermesant M, Stoeck C, Kozerke S, Batchelor P (2010) In vivo human 3D cardiac fibre architecture: reconstruction using curvilinear interpolation of diffusion tensor images. In: Proceedings of the 13th international conference on Medical image computing and computer-assisted intervention vol. 13, pp 418–425. Springer-Verlag

  239. Trayanova NA (2011) Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. Circ Res 108:113–128

    Article  PubMed  CAS  Google Scholar 

  240. Tsang TSM, Barnes ME, Gersh BJ, Bailey KR, Seward JB (2002) Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol 90:1284–1289

    Article  PubMed  Google Scholar 

  241. Tsao HM, Yu WC, Cheng HC, Wu MH, Tai CT, Lin WS, Ding YA, Chang MS, Chen SA (2001) Pulmonary vein dilation in patients with atrial fibrillation: detection by magnetic resonance imaging. J Cardiovasc Electrophysiol 12:809–813

    Article  PubMed  CAS  Google Scholar 

  242. Tsujimae K, Murakami S, Kurachi Y (2008) In silico study on the effects of IKur block kinetics on prolongation of human action potential after atrial fibrillation-induced electrical remodeling. Am J Physiol Heart Circ Physiol 294:H793–H800

    Article  PubMed  CAS  Google Scholar 

  243. Uldry L, Jacquemet V, Virag N, Kappenberger L, Vesin JM (2012) Estimating the time scale and anatomical location of atrial fibrillation spontaneous termination in a biophysical model. Med Biol Eng Comput 50:155–163

    Article  PubMed  Google Scholar 

  244. Uldry L, Virag N, Jacquemet V, Vesin JM, Kappenberger L (2009) Spontaneous termination of atrial fibrillation: study of the effect of atrial geometry in a biophysical model. In: Engineering in medicine and biology society (EMBC) 2009 annual international conference of the IEEE, pp 4504–4507

  245. Uldry L, Virag N, Jacquemet V, Vesin JM, Kappenberger L (2010) Optimizing local capture of atrial fibrillation by rapid pacing: study of the influence of tissue dynamics. Ann Biomed Eng 38:3664–3673

    Article  PubMed  Google Scholar 

  246. Uldry L, Virag N, Vesin JM, Kappenberger L (2010) Studies of therapeutic strategies for atrial fibrillation based on a biophysical model of the human atria patient-specific modeling of the cardiovascular system, Springer, New York pp 63–79.

  247. Umapathy K, Masse S, Kolodziejska K, Veenhuyzen GD, Chauhan VS, Husain M, Farid T, Downar E, Sevaptsidis E, Nanthakumar K (2008) Electrogram fractionation in murine HL-1 atrial monolayer model. Heart Rhythm 5:1029–1035

    Article  PubMed  Google Scholar 

  248. Veinot JP, Lemery R (2005) Innovations in cardiovascular pathology: anatomic and electrophysiologic determinants associated with ablation of atrial arrhythmias. Cardiovasc Pathol 14:204–213

    Article  PubMed  Google Scholar 

  249. Vigmond EJ, Ruckdeschel R, Trayanova N (2001) Reentry in a morphologically realistic atrial model. J Cardiovasc Electrophysiol 12:1046–1054

    Article  PubMed  CAS  Google Scholar 

  250. Vigmond EJ, Tsoi V, Yin Y, Page P, Vinet A (2009) Estimating atrial action potential duration from electrograms. IEEE Trans Biomed Eng 56:1546–1555

    Article  PubMed  Google Scholar 

  251. Virag N, Jacquemet V, Henriquez CS, Zozor S, Blanc O, Vesin JM, Pruvot E, Kappenberger L (2002) Study of atrial arrhythmias in a computer model based on magnetic resonance images of human atria. Chaos 12:754–763

    Article  PubMed  Google Scholar 

  252. Voigt I, Mansi T, Mihalef V, Ionasec R, Calleja, A, Mengue E, Sharma P, Houle H, Georgescu, B, Hornegger J, Comaniciu D (2011) LNCS (FIMH 2011) Lecture Notes in Computer Science, vol. 6666, chap. Patient-Specific Model of Left Heart Anatomy, Dynamics and Hemodynamics from 4D TEE: A First Validation Study, pp. 341–349. Springer Berlin/Heidelberg

  253. Wang K, Ho SY, Gibson DG, Anderson RH (1995) Architecture of atrial musculature in humans. Br H J 73:559–565

    Article  CAS  Google Scholar 

  254. Weber FM, Keller DUJ, Bauer S, Seemann G, Lorenz C, Dössel O (2011) Predicting tissue conductivity influences on body surface potentials: an efficient approach based on principal component analysis. IEEE Trans Biomed Eng 58:265–273

    Article  PubMed  Google Scholar 

  255. Weber FM, Luik A, Schilling C, Seemann G, Krueger MW, Lorenz C, Schmitt C, Dössel O (2011) Conduction velocity restitution of the human atrium: an efficient measurement protocol for clinical electrophysiological studies. IEEE Trans Biomed Eng 58:2648–2655

    Article  PubMed  Google Scholar 

  256. Weber FM, Schilling C, Seemann G, Luik A, Schmitt C, Lorenz C, Dössel O (2010) Wave-direction and conduction-velocity analysis from intracardiac electrograms: a single-shot technique. IEEE Trans Biomed Eng 57:2394–2401

    Article  PubMed  Google Scholar 

  257. Weber FM, Schilling C, Straub D, Gurm S, Seemann G, Lorenz C, Dössel O (2009) Extracting clinically relevant circular mapping and coronary sinus catheter potentials from atrial simulations. In: Lecture Notes in Computer Science, 5528, pp 30–38

  258. Weese J, Peters J, Waechter I, Kneser R, Lehmann H, Ecabert O, Barschdorf H, Weber FM, Doessel O, Lorenz C (2010) The generation of patient-specific heart models for diagnosis and interventions. In: Lecture Notes in Computer Science 6364, pp 25–35

  259. Werner CD, Sachse FB, Dössel O (2000) Electrical excitation propagation in the human heart. Int. J. Bioelectromagnetism 2

  260. Wieser L, Fischer G, Hintringer F, Ho S, Tilg B (2005) Reentry anchoring at a pair of pulmonary vein ostia. In: Frangi A, Radeva P, Santos A, Hernandez M (eds) Functional imaging and modeling of the heart. Lecture Notes in Computer Science, vol 3504, Springer, Berlin, pp 183–194

  261. Wieser L, Nowak CN, Tilg B, Fischer G (2008) Mother rotor anchoring in branching tissue with heterogeneous membrane properties. Biomed Eng 53:25–35

    Google Scholar 

  262. Wieser L, Richter HE, Plank G, Pfeifer B, Tilg B, Nowak CN, Fischer G (2008) A finite element formulation for atrial tissue monolayer. Method Inf Med 47:131–139

    CAS  Google Scholar 

  263. Wittkampf FHM, van Oosterhout MF, Loh P, Derksen R, Vonken Ej, Slootweg PJ, Ho SY (2005) Where to draw the mitral isthmus line in catheter ablation of atrial fibrillation: histological analysis. Eur Heart J 26:689–695

    Article  PubMed  Google Scholar 

  264. Young AA, Frangi AF (2009) Computational cardiac atlases: from patient to population and back. Exp Physiol 94:578–596

    Article  PubMed  Google Scholar 

  265. Yu WC, Lee SH, Tai CT (1999) Reversal of atrial electrical remodeling following cardioversion of long-standing atrial fibrillation in man. Cardiovasc Res 42:470–476

    Article  PubMed  CAS  Google Scholar 

  266. Zemlin CW, Herzel H, Ho SY, Panfilow A (2001) A realistic and efficient model of excitation propagation in the human atria Computer simulation and experimental assessment of cardiac electrophysiology. Futura, pp 29–34

  267. Zhang H, Garratt CJ, Kharche S, Holden AV (2009) Remodelling of cellular excitation (reaction) and intercellular coupling (diffusion) by chronic atrial fibrillation represented by a reaction-diffusion system. Phys D Nonlin Phenom 238:976–983

    Article  CAS  Google Scholar 

  268. Zhang H, Garratt CJ, Zhu J, Holden AV (2005) Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans. Cardiovasc Res 66:493–502

    Article  PubMed  CAS  Google Scholar 

  269. Zhang H, Holden AV, Kodama I, Honjo H, Lei M, Varghese T, Boyett MR (2000) Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node. Am J Physiol Heart Circ Physiol 279:H397–H421

    PubMed  CAS  Google Scholar 

  270. Zhang YH, Youm JB, Sung HK, Lee SH, Ryu SY, Ho WK, Earm YE (2000) Stretch-activated and background non-selective cation channels in rat atrial myocytes. J Physiol 523:607–619

    Article  PubMed  CAS  Google Scholar 

  271. Zhao J, Amiri A, Sands GB, Trew M, LeGrice, I, Smaill BH, Pullan AJ (2008) Structure specific models of electrical function in the right atrial appendage. In: Engineering in medicine and biology society (EMBC) 2008 Annual international conference of the IEEE, pp 145–148

  272. Zhao J, Butters TD, Zhang H, Pullan AJ, LeGrice IJ, Sands GB, Smaill BH (2012) An image-based model of atrial muscular architecture: Effects of structural anisotropy on electrical activation. Circ Arrhythmia Electrophysiol (Epub ahead of print)

  273. Zhao J, Trew ML, Legrice IJ, Smaill BH, Pullan AJ (2009) A tissue-specific model of reentry in the right atrial appendage. Journal of Cardiovascular Electrophysiology 20:675–684

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 224495 (euHeart project). The work of M. Wilhelms was supported by the German Research Foundation under Grant DFG SE 1758/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Dössel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dössel, O., Krueger, M.W., Weber, F.M. et al. Computational modeling of the human atrial anatomy and electrophysiology. Med Biol Eng Comput 50, 773–799 (2012). https://doi.org/10.1007/s11517-012-0924-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0924-6

Keywords

Navigation