Skip to main content
Log in

The Hartogs extension theorem for holomorphic vector bundles and sprays

  • Published:
Arkiv för Matematik

Abstract

We give a detailed proof of Siu’s theorem on extendibility of holomorphic vector bundles of rank larger than one, and prove a corresponding extension theorem for holomorphic sprays. We apply this result to study ellipticity properties of complements of compact subsets in Stein manifolds. In particular we show that the complement of a closed ball in \(\mathbb{C}^{n}, n \geq3\), is not subelliptic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersén, E., Volume-preserving automorphisms of \(\mathbf{C}^{n}\), Complex Var. Theory Appl. 14 (1990), 223–235. MR1048723 (91d:32047).

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersén, E. and Lempert, L., On the group of holomorphic automorphisms of \(\mathbf{C}^{n}\), Invent. Math. 110 (1992), 371–388. MR1185588 (93i:32038), doi:10.1007/BF01231337.

    Article  MathSciNet  MATH  Google Scholar 

  3. Fornæss, J. E., Sibony, N. and Wold, E. F., \(Q\)-complete domains with corners in \(\mathbb{P}^{n}\) and extension of line bundles, Math. Z. 273 (2013), 589–604. MR3010177, doi:10.1007/s00209-012-1021-0.

    Article  MathSciNet  MATH  Google Scholar 

  4. Forstnerič, F. and Rosay, J.-P., Approximation of biholomorphic mappings by automorphisms of \(\mathbf{C}^{n}\), Invent. Math. 112 (1993), 323–349. MR1213106 (94f:32032), doi:10.1007/BF01232438.

    Article  MathSciNet  MATH  Google Scholar 

  5. Forstnerič, F. and Rosay, J.-P., Erratum: “Approximation of biholomorphic mappings by automorphisms of \(\mathbb{C}^{n}\)”, Invent. Math. 112 (1993), 323–349. MR1213106 (94f:32032). [Invent. Math. 118 (1994), 573–574, MR1296357 (95f:32019)], doi:10.1007/BF01231544.

    Article  MathSciNet  MATH  Google Scholar 

  6. Forstnerič, F., The Oka principle for sections of subelliptic submersions, Math. Z. 241 (2002), 527–551. MR1938703 (2003i:32043), doi:10.1007/s00209-002-0429-3.

    Article  MathSciNet  MATH  Google Scholar 

  7. Forstnerič, F., Stein manifolds and holomorphic mappings, in The Homotopy Principle in Complex Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 56, p. xii+489, Springer, Heidelberg, 2011, MR2975791, doi:10.1007/978-3-642-22250-4.

    Google Scholar 

  8. Forstnerič, F., Extending holomorphic mappings from subvarieties in Stein manifolds, Ann. Inst. Fourier (Grenoble) 55 (2005), 733–751. (English, with English and French summaries), MR2149401 (2006c:32012).

    Article  MathSciNet  MATH  Google Scholar 

  9. Forstnerič, F., Runge approximation on convex sets implies the Oka property, Ann. of Math. (2) 163 (2006), 689–707. MR2199229 (2006j:32011), doi:10.4007/annals.2006.163.689.

    Article  MathSciNet  MATH  Google Scholar 

  10. Forstnerič, F., Oka manifolds, C. R. Math. Acad. Sci. Paris 347 (2009), 1017–1020. (English, with English and French summaries), MR2554568 (2011c:32012), doi:10.1016/j.crma.2009.07.005.

    Article  MathSciNet  MATH  Google Scholar 

  11. Forstnerič, F. and Ritter, T., Oka properties of ball complements, Math. Z. 277 (2014), 325–338. MR3205776, doi:10.1007/s00209-013-1258-2.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gromov, M., Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), 851–897. MR1001851 (90g:32017), doi:10.2307/1990897.

    MathSciNet  MATH  Google Scholar 

  13. Grauert, H., Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann. 133 (1957), 450–472. (German). MR0098198 (20 #4660).

    Article  MathSciNet  MATH  Google Scholar 

  14. Henkin, G. and Leiterer, J., The Oka–Grauert principle without induction over the base dimension, Math. Ann. 311 (1998), 71–93. MR1624267 (99f:32048), doi:10.1007/s002080050177.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ivashkovich, S., Bochner–Hartogs type extension theorem for roots and logarithms of holomorphic line bundles, Tr. Mat. Inst. Steklova 279 (2012), 269–287. MR3086770.

    MathSciNet  MATH  Google Scholar 

  16. Siu, Y.-T., A Hartogs type extension theorem for coherent analytic sheaves, Ann. of Math. (2) 93 (1971), 166–188. MR0279342 (43 #5064).

    Article  MathSciNet  MATH  Google Scholar 

  17. Siu, Y.-T., Techniques of extension of analytic objects, Lecture Notes in Pure and Applied Mathematics 8, p. iv+256, Dekker, New York, 1974. MR0361154 (50 #13600).

    Google Scholar 

  18. Stout, E. L., Polynomial convexity, Progress in Mathematics 261, p. xii+439, Birkhäuser Boston, Boston, MA, 2007. MR2305474 (2008d:32012).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael B. Andrist.

Additional information

E. F. Wold is supported by grant NFR-209751/F20 from the Norwegian Research Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrist, R.B., Shcherbina, N. & Wold, E.F. The Hartogs extension theorem for holomorphic vector bundles and sprays. Ark Mat 54, 299–319 (2016). https://doi.org/10.1007/s11512-015-0226-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-015-0226-y

Keywords

Navigation