Skip to main content
Log in

Geometric measures in the dual Brunn–Minkowski theory and their associated Minkowski problems

  • Published:
Acta Mathematica

Abstract

A longstanding question in the dual Brunn–Minkowski theory is “What are the dual analogues of Federer’s curvature measures for convex bodies?” The answer to this is provided. This leads naturally to dual versions of Minkowski-type problems: What are necessary and sufficient conditions for a Borel measure to be a dual curvature measure of a convex body? Sufficient conditions, involving measure concentration, are established for the existence of solutions to these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aleksandrov, A. D., On the theory of mixed volumes of convex bodies. III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. Mat. Sb., 3 (1938), 27–46 (Russian); English translation in Aleksandrov, A. D., Selected Works, Part 1, Chapter 4, pp. 61–97, Gordon and Breach, Amsterdam, 1996

  2. Aleksandrov, A. D., On the area function of a convex body. Mat. Sb., 6 (1939), 167–174 (Russian); English translation in Aleksandrov, A. D., Selected Works, Part 1, Chapter 9, pp. 155–162, Gordon and Breach, Amsterdam, 1996

  3. Aleksandrov, A.D.: Existence and uniqueness of a convex surface with a given integral curvature. Dokl. Akad. Nauk SSSR 35, 131–134 (1942)

    MathSciNet  MATH  Google Scholar 

  4. Alesker, S.: Continuous rotation invariant valuations on convex sets. Ann. of Math. 149, 977–1005 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alesker, S.: Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. Geom. Funct. Anal. 11, 244–272 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alesker, S.: The multiplicative structure on continuous polynomial valuations. Geom. Funct. Anal. 14, 1–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alesker, S., Bernig, A., Schuster, F.E.: Harmonic analysis of translation invariant valuations. Geom. Funct. Anal. 21, 751–773 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Andrews, B.: Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138, 151–161 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Andrews, B.: Classification of limiting shapes for isotropic curve flows. J. Amer. Math. Soc. 16, 443–459 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barthe, F., Guédon, O., Mendelson, S., Naor, A.: A probabilistic approach to the geometry of the ln \({l^n_p}\)-ball. Ann. Probab. 33, 480–513 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berg, C.: Corps convexes et potentiels sphériques. Mat.-Fys. Medd. Danske Vid. Selsk. 37, 1–64 (1969)

    MATH  Google Scholar 

  12. Bernig, A., Fu, J.H.G.: Hermitian integral geometry. Ann. of Math. 173, 907–945 (2011)

    MathSciNet  Google Scholar 

  13. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn-Minkowski inequality. Adv. Math. 231, 1974–1997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: The logarithmic Minkowski problem. J. Amer. Math. Soc. 26, 831–852 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Böröczky, K.J., Lutwak, E., Yang, D., Zhang, G.: Affine images of isotropic measures. J. Differential Geom. 99, 407–442 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Bourgain, J.: On the Busemann-Petty problem for perturbations of the ball. Geom. Funct. Anal. 1, 1–13 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caffarelli, L.A.: Interior \({W^{2, p}}\) estimates for solutions of the Monge-Ampère equation. Ann. of Math. 131, 135–150 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, W.: \(L_p\) Minkowski problem with not necessarily positive data. Adv. Math. 201, 77–89 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, S.Y., Yau, S.T.: On the regularity of the solution of the n-dimensional Minkowski problem. Comm. Pure Appl. Math. 29, 495–516 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chou, K.S., Wang, X.-J.: The \(L_p\)-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–83 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cianchi, A., Lutwak, E., Yang, D., Zhang, G.: Affine Moser-Trudinger and Morrey-Sobolev inequalities. Calc. Var. Partial Differential Equations 36, 419–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics. CRC Press, Boca Raton, FL (2015)

    MATH  Google Scholar 

  23. Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fenchel, W. & Jessen, B., Mengenfunktionen und konvexe Körper. Danske Vid. Selskab. Mat.-Fys. Medd., 16 (1938), 1–31

  25. Firey, W.J.: Christoffel’s problem for general convex bodies. Mathematika 15, 7–21 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gardner, R.J.: A positive answer to the Busemann-Petty problem in three dimensions. Ann. of Math. 140, 435–447 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gardner, R. J., Geometric Tomography. Encyclopedia of Mathematics and its Applications, 58. Cambridge Univ. Press, New York, 2006

  28. Gardner, R.J., Koldobsky, A., Schlumprecht, T.: An analytic solution to the Busemann-Petty problem on sections of convex bodies. Ann. of Math. 149, 691–703 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Goodey, P., Yaskin, V., Yaskina, M.: A Fourier transform approach to Christoffel's problem. Trans. Amer. Math. Soc. 363, 6351–6384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grinberg, E., Zhang, G.: Convolutions, transforms, and convex bodies. Proc. London Math. Soc. 78, 77–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gruber, P. M., Convex and Discrete Geometry. Grundlehren der Mathematischen Wissenschaften, 336. Springer, Berlin–Heidelberg, 2007

  32. Guan, B., Guan, P.: Convex hypersurfaces of prescribed curvatures. Ann. of Math. 156, 655–673 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Guan, P., Li, J., Li, Y.Y.: Hypersurfaces of prescribed curvature measure. Duke Math. J. 161, 1927–1942 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Guan, P., Li, Y.Y.: \(C^{1,1}\) estimates for solutions of a problem of Alexandrov. Comm. Pure Appl. Math. 50, 789–811 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guan, P., Lin, C.S., Ma, X.-N.: The existence of convex body with prescribed curvature measures. Int. Math. Res. Not. IMRN 11, 1947–1975 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Guan, P., Ma, X.-N.: The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation. Invent. Math. 151, 553–577 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Haberl, C.: Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc. (JEMS) 14, 1565–1597 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Haberl, C., Parapatits, L.: The centro-affine Hadwiger theorem. J. Amer. Math. Soc. 27, 685–705 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Haberl, C., Parapatits, L.: Valuations and surface area measures. J. Reine Angew. Math. 687, 225–245 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Haberl, C., Schuster, F.E.: Asymmetric affine \(L_p\) Sobolev inequalities. J. Funct. Anal. 257, 641–658 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Haberl, C., Schuster, F.E.: General \(L_p\) affine isoperimetric inequalities. J. Differential Geom. 83, 1–26 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Cifre, Hernández: M.A. & Saorín, E., On differentiability of quermassintegrals. Forum Math. 22, 115–126 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Huang, Y., Liu, J., Xu, L.: On the uniqueness of \(L_p\)-Minkowski problems: the constant p-curvature case in \({\mathbb{R}^3}\). Adv. Math. 281, 906–927 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jian, H., Lu, J., Wang, X.-J.: Nonuniqueness of solutions to the \(L_p\)-Minkowski problem. Adv. Math. 281, 845–856 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Koldobsky, A., Fourier Analysis in Convex Geometry. Mathematical Surveys and Monographs, 116. Amer. Math. Soc., Providence, RI, 2005

  46. Lu, J., Wang, X.J.: Rotationally symmetric solutions to the \(L_p\)-Minkowski problem. J. Differential Equations 254, 983–1005 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ludwig, M.: Ellipsoids and matrix-valued valuations. Duke Math. J. 119, 159–188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lu, J., Wang, X.J.: Intersection bodies and valuations. Amer. J. Math. 128, 1409–1428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lu, J., Wang, X.J.: Minkowski areas and valuations. J. Differential Geom. 86, 133–161 (2010)

    MathSciNet  Google Scholar 

  50. Lu, J., Wang, X.J.: Valuations on Sobolev spaces. Amer. J. Math. 134, 827–842 (2012)

    MathSciNet  Google Scholar 

  51. Ludwig, M., Reitzner, M.: A classification of SL(n) invariant valuations. Ann. of Math. 172, 1219–1267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lutwak, E.: Dual mixed volumes. Pacific J. Math. 58, 531–538 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lutwak, E.: Intersection bodies and dual mixed volumes. Adv. in Math. 71, 232–261 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lutwak, E.: The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differential Geom. 38, 131–150 (1993)

    MathSciNet  MATH  Google Scholar 

  55. Lutwak, E., Oliker, V.: On the regularity of solutions to a generalization of the Minkowski problem. J. Differential Geom. 41, 227–246 (1995)

    MathSciNet  MATH  Google Scholar 

  56. Lutwak, E., Yang, D., Zhang, G.: \(L_p\) affine isoperimetric inequalities. J. Differential Geom. 56, 111–132 (2000)

    MathSciNet  MATH  Google Scholar 

  57. Lutwak, E., Yang, D., Zhang, G.: A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375–390 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  58. Lutwak, E., Yang, D., Zhang, G.: Sharp affine \(L_p\) Sobolev inequalities. J. Differential Geom. 62, 17–38 (2002)

    MathSciNet  MATH  Google Scholar 

  59. Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for subspaces of \(L_p\). J. Differential Geom. 68, 159–184 (2004)

    MathSciNet  MATH  Google Scholar 

  60. Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differential Geom. 84, 365–387 (2010)

    MathSciNet  MATH  Google Scholar 

  61. Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  62. Lutwak, E., Zhang, G.: Blaschke-Santaló inequalities. J. Differential Geom. 47, 1–16 (1997)

    MathSciNet  MATH  Google Scholar 

  63. Minkowski, H., Allgemeine Lehrsätze über die convexen Polyeder. Nachr. Ges. Wiss. Göttingen, (1897), 198–219

  64. Minkowski, H., Volumen und Oberfläche. Math. Ann., 57 (1903), 447–495

  65. Naor, A.: The surface measure and cone measure on the sphere of \({l^n_p}\). Trans. Amer. Math. Soc. 359, 1045–1079 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  66. Naor, A., Romik, D.: Projecting the surface measure of the sphere of \(l^n_p\). Ann. Inst. H. Poincaré Probab. Statist. 39, 241–261 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  67. Nirenberg, L.: The Weyl and Minkowski problems in differential geometry in the large. Comm. Pure Appl. Math. 6, 337–394 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  68. Oliker, V.: Embedding \(\mathbf{S}^n\) into \(\mathbf{R}^{n+1}\) with given integral Gauss curvature and optimal mass transport on \(\mathbf{S}^n\). Adv. Math. 213, 600–620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. Paouris, G., Werner, E.M.: Relative entropy of cone measures and \(L_p\) centroid bodies. Proc. Lond. Math. Soc. 104, 253–286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Pogorelov, A. V., The existence of a closed convex hypersurface with a given function of the principal radii of a curve. Dokl. Akad. Nauk SSSR, 197: 526–528 (Russian). English translation in Soviet Math. Dokl. 12(1971), 494–497 (1971)

    Google Scholar 

  71. Pogorelov, A.V.: The Minkowski Multidimensional Problem. Winston & Sons, Washington, DC (1978)

    MATH  Google Scholar 

  72. Schneider, R.: Das Christoffel-Problem für Polytope. Geom. Dedicata 6, 81–85 (1977)

    Google Scholar 

  73. Pogorelov, A.V.: Curvature measures of convex bodies. Ann. Mat. Pura Appl. 116, 101–134 (1978)

    Article  MathSciNet  Google Scholar 

  74. Pogorelov, A.V.: Bestimmung konvexer Körper durch Krümmungsmasse. Comment. Math. Helv. 54, 42–60 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  75. Pogorelov, A. V., Convex Bodies: the Brunn–Minkowski Theory. Encyclopedia of Mathematics and its Applications, 151. Cambridge Univ. Press, Cambridge, 2014

  76. Schuster, F.E.: Crofton measures and Minkowski valuations. Duke Math. J. 154, 1–30 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  77. Schuster, F.E., Wannerer, T.: Even Minkowski valuations. Amer. J. Math. 137, 1651–1683 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  78. Trudinger, N. S. & Wang, X.-J., The Monge–Ampère equation and its geometric applications, in Handbook of Geometric Analysis, Adv. Lect. Math., 7, pp. 467–524. Int. Press, Somerville, MA, 2008

  79. Zhang, G.: The affine Sobolev inequality. J. Differential Geom. 53, 183–202 (1999)

    MathSciNet  MATH  Google Scholar 

  80. Zhang, G.: Dual kinematic formulas. Trans. Amer. Math. Soc. 351, 985–995 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  81. Zhang, G.: A positive solution to the Busemann-Petty problem in \(\mathbf{R}^4\). Ann. of Math. 149, 535–543 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  82. Zhu, G.: The logarithmic Minkowski problem for polytopes. Adv. Math. 262, 909–931 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  83. Zhang, G.: The centro-affine Minkowski problem for polytopes. J. Differential Geom. 101, 159–174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  84. Zhang, G.: The \(L_p\) Minkowski problem for polytopes for 0<p<1. J. Funct. Anal. 269, 1070–1094 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Huang.

Additional information

Research of the first author supported, in part, by NSFC No.11371360; research of the other authors supported, in part, by NSF Grant DMS-1312181.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Lutwak, E., Yang, D. et al. Geometric measures in the dual Brunn–Minkowski theory and their associated Minkowski problems. Acta Math 216, 325–388 (2016). https://doi.org/10.1007/s11511-016-0140-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-016-0140-6

2010 Math. Subj. Classification

Keywords

Navigation