Skip to main content

Advertisement

Log in

Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Efficient targeted delivery of anticancer agents to TNBC cells remains one of the greatest challenges to developing therapies. The lack of tumor-specific markers, aggressive nature of the tumor, and unique propensity to recur and metastasize make TNBC tumors more difficult to treat than other subtypes. We propose to exploit natural ability of macrophages to target cancer cells by means of extracellular vesicles (EVs) as drug delivery vehicles for chemotherapeutic agents, paclitaxel (PTX) and doxorubicin (Dox). We demonstrated earlier that macrophage-derived EVs loaded with PTX (EV-PTX) and Dox (EV-Dox) target cancer cells and exhibited high anticancer efficacy in a mouse model of pulmonary metastases. Herein, we report a manufacture and characterization of novel EV-based drug formulations using different loading procedures that were optimized by varying pH, temperature, and sonication conditions. Selected EV-based formulations showed a high drug loading, efficient accumulation in TNBC cells in vitro, and pronounced anti-proliferation effect. Drug-loaded EVs target TNBC in vivo, including the orthotopic mouse T11 tumors in immune competent BALB/C mice, and human MDA-MB-231 tumors in athymic nu/nu mice, and abolished tumor growth. Overall, EV-based formulations can provide a novel solution to a currently unmet clinical need and reduce the morbidity and mortality of TNBC patients.

Macrophage-derived extracellular vesicles (EVs) for targeted drug delivery to TNBC tumors. Chemotherapeutics with different water solubility (Dox or PTX, i.e. hydrophilic or hydrophobic drugs, respectively) were loaded into macrophage-derived EVs through parental cells (Dox), or into naïve EVs (Dox or PTX), and their antitumor efficacy was demonstrated in mouse orthotopic TNBC model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamiak M, Cheng G, Bobis-Wozowicz S, Zhao L, Kedracka-Krok S, Samanta A, Karnas E, Xuan YT, Skupien-Rabian B, Chen X, Jankowska U, Girgis M, Sekula M, Davani A, Lasota S, Vincent RJ, Sarna M, Newell KL, Wang OL, Dudley N, Madeja Z, Dawn B, Zuba-Surma EK (2018) Induced pluripotent stem cell (iPSC)-derived extracellular vesicles are safer and more effective for cardiac repair than iPSCs. Circ Res 122(2):296–309

    CAS  PubMed  Google Scholar 

  • Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, Alhakeem SS, Oben K, Munagala R, Bondada S, Gupta RC (2017) Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine 13(5):1627–1636

    CAS  PubMed  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345

    CAS  PubMed  Google Scholar 

  • Armstrong JPK, Stevens MM (2018) Strategic design of extracellular vesicle drug delivery systems. Adv Drug Deliv Rev 130:12–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aryani A, Denecke B (2016) Exosomes as a Nanodelivery system: a key to the future of Neuromedicine? Mol Neurobiol 53(2):818–834

    CAS  PubMed  Google Scholar 

  • Baghaei K, Tokhanbigli S, Asadzadeh H, Nmaki S, Reza Zali M, Hashemi SM (2018) Exosomes as a novel cell-free therapeutic approach in gastrointestinal diseases. J Cell Physiol

  • Batrakova EV, Kelly DL, Li S, Li Y, Yang Z, Xiao L, Alakhova DY, Sherman S, Alakhov VY, Kabanov AV (2006) Alteration of genomic responses to doxorubicin and prevention of MDR in breast cancer cells by a polymer excipient: pluronic P85. Mol Pharm 3(2):113–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batrakova EV, Li S, Brynskikh AM, Sharma AK, Li Y, Boska M, Gong N, Mosley RL, Alakhov VY, Gendelman HE, Kabanov AV (2010) Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers. J Control Release 143(3):290–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beckman JS, Minor RL Jr, White CW, Repine JE, Rosen GM, Freeman BA (1988) Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. J Biol Chem 263(14):6884–6892

    CAS  PubMed  Google Scholar 

  • Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A, Ploix S, Vimond N, Peguillet I, Thery C, Lacroix L, Zoernig I, Dhodapkar K, Dhodapkar M, Viaud S, Soria JC, Reiners KS, Pogge von Strandmann E, Vely F, Rusakiewicz S, Eggermont A, Pitt JM, Zitvogel L, Chaput N (2016) Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5(4):e1071008

    PubMed  Google Scholar 

  • Bobis-Wozowicz S, Kmiotek K, Kania K, Karnas E, Labedz-Maslowska A, Sekula M, Kedracka-Krok S, Kolcz J, Boruczkowski D, Madeja Z, Zuba-Surma EK (2017) Diverse impact of xeno-free conditions on biological and regenerative properties of hUC-MSCs and their extracellular vesicles. J Mol Med (Berl) 95(2):205–220

    CAS  Google Scholar 

  • Chandolu V, Dass CR (2013) Treatment of lung cancer using nanoparticle drug delivery systems. Curr Drug Discov Technol 10(2):170–176

    CAS  PubMed  Google Scholar 

  • Chen L, Charrier A, Zhou Y, Chen R, Yu B, Agarwal K, Tsukamoto H, Lee LJ, Paulaitis ME, Brigstock DR (2014) Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology 59(3):1118–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cyprian FS, Akhtar S, Gatalica Z, Vranic S (2019) Targeted immunotherapy with a checkpoint inhibitor in combination with chemotherapy: a new clinical paradigm in the treatment of triple-negative breast cancer. J Basic Med Sci, Bosn

    Google Scholar 

  • Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, Li G (2008) Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 16(4):782–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dams ET, Laverman P, Oyen WJ, Storm G, Scherphof GL, van Der Meer JW, Corstens FH, Boerman OC (2000) Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292(3):1071–1079

    CAS  PubMed  Google Scholar 

  • de Godoy MA, Saraiva LM, de Carvalho LRP, Vasconcelos-Dos-Santos A, Beiral HJV, Ramos AB, Silva LRP, Leal RB, Monteiro VHS, Braga CV, de Araujo-Silva CA, Sinis LC, Bodart-Santos V, Kasai-Brunswick TH, Alcantara CL, Lima A, da Cunha ESNL, Galina A, Vieyra A, De Felice FG, Mendez-Otero R, Ferreira ST (2018) Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-beta oligomers. J Biol Chem 293(6):1957–1975

    PubMed  Google Scholar 

  • Diaz-Varela M, de Menezes-Neto A, Perez-Zsolt D, Gamez-Valero A, Segui-Barber J, Izquierdo-Useros N, Martinez-Picado J, Fernandez-Becerra C, Del Portillo HA (2018) Proteomics study of human cord blood reticulocyte-derived exosomes. Sci Rep 8(1):14046

    PubMed  PubMed Central  Google Scholar 

  • Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, Boccaccio C, Bonnerot C, Dhellin O, Movassagh M, Piperno S, Robert C, Serra V, Valente N, Le Pecq JB, Spatz A, Lantz O, Tursz T, Angevin E, Zitvogel L (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 3(1):10

    PubMed  PubMed Central  Google Scholar 

  • Farhat SC, Silva CA, Orione MA, Campos LM, Sallum AM, Braga AL (2011) Air pollution in autoimmune rheumatic diseases: a review. Autoimmun Rev 11(1):14–21

    CAS  PubMed  Google Scholar 

  • Ferrari M, Fornasiero M, Isetta A (1990) MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods 131(2):165–172

    CAS  PubMed  Google Scholar 

  • Ferreira ADF, Gomes DA (2018) Stem cell extracellular vesicles in skin repair. Bioengineering (Basel) 6(1)

  • Finn, O. J. (2012). "Immuno-oncology: understanding the function and dysfunction of the immune system in cancer." Ann Oncol 23 Suppl 8: viii6-9

  • Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123(2):321–334

    CAS  PubMed  Google Scholar 

  • Gorgens A, Bremer M, Ferrer-Tur R, Murke F, Tertel T, Horn PA, Thalmann S, Welsh JA, Probst C, Guerin C, Boulanger CM, Jones JC, Hanenberg H, Erdbrugger U, Lannigan J, Ricklefs FL, El-Andaloussi S, Giebel B (2019) Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J Extracell Vesicles 8(1):1587567

    PubMed  PubMed Central  Google Scholar 

  • Greish K, Pittala V, Taurin S, Taha S, Bahman F, Mathur A, Jasim A, Mohammed F, El-Deeb IM, Fredericks S, Rashid-Doubell F (2018) Curcumin(−)copper complex nanoparticles for the management of triple-negative breast Cancer. Nanomaterials (Basel) 8(11)

  • Guo P, Huang J, Wang L, Jia D, Yang J, Dillon DA, Zurakowski D, Mao H, Moses MA, Auguste DT (2014) ICAM-1 as a molecular target for triple negative breast cancer. Proc Natl Acad Sci U S A 111(41):14710–14715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296

    PubMed  PubMed Central  Google Scholar 

  • Hafiane A, Daskalopoulou SS (2018) Extracellular vesicles characteristics and emerging roles in atherosclerotic cardiovascular disease. Metabolism 85:213–222

    CAS  PubMed  Google Scholar 

  • Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV (2015) Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 207:18–30

  • Ishida T, Kashima S, Kiwada H (2008) The contribution of phagocytic activity of liver macrophages to the accelerated blood clearance (ABC) phenomenon of PEGylated liposomes in rats. J Control Release 126(2):162–165

    CAS  PubMed  Google Scholar 

  • Jiang XC, Gao JQ (2017) Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm 521(1–2):167–175

    CAS  PubMed  Google Scholar 

  • Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M (2014) A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 1846(1):75–87

    CAS  PubMed  Google Scholar 

  • Kalani A, Kamat PK, Chaturvedi P, Tyagi SC, Tyagi N (2014) Curcumin-primed exosomes mitigate endothelial cell dysfunction during hyperhomocysteinemia. Life Sci 107(1–2):1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Singh SP, Elkahloun AG, Wu W, Abu-Asab MS, Roberts DD (2014) CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biol 37:49–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krausz AE, Adler BL, Makdisi J, Schairer D, Rosen J, Landriscina A, Navati M, Alfieri A, Friedman JM, Nosanchuk JD, Rodriguez-Gabin A, Ye KQ, McDaid HM, Friedman AJ (2018) Nanoparticle-encapsulated doxorubicin demonstrates superior tumor cell kill in triple negative breast Cancer subtypes intrinsically resistant to doxorubicin. Precis Nanomed 1(3):173–182

    PubMed  PubMed Central  Google Scholar 

  • Lamichhane TN, Raiker RS, Jay SM (2015) Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharm 12(10):3650–3657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Su C (2019) Design strategies and application progress of therapeutic exosomes. Theranostics 9(4):1015–1028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long KB, Beatty GL (2013) Harnessing the antitumor potential of macrophages for cancer immunotherapy. Oncoimmunology 2(12):e26860

    PubMed  PubMed Central  Google Scholar 

  • Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol 27(3):172–188

    CAS  PubMed  Google Scholar 

  • Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteome 73(10):1907–1920

    CAS  Google Scholar 

  • Mendt M, Kamerkar S, Sugimoto H, McAndrews KM, Wu CC, Gagea M, Yang S, Blanko EVR, Peng Q, Ma X, Marszalek JR, Maitra A, Yee C, Rezvani K, Shpall E, LeBleu VS, Kalluri R (2018) Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight 3(8)

  • Mentkowski KI, Snitzer JD, Rusnak S, Lang JK (2018) Therapeutic potential of engineered extracellular vesicles. AAPS J 20(3):50

    PubMed  Google Scholar 

  • Mersin H, Yildirim E, Berberoglu U, Gulben K (2008) The prognostic importance of triple negative breast carcinoma. Breast 17(4):341–346

    PubMed  Google Scholar 

  • Mignot G, Roux S, Thery C, Segura E, Zitvogel L (2006) Prospects for exosomes in immunotherapy of cancer. J Cell Mol Med 10(2):376–388

    CAS  PubMed  Google Scholar 

  • Mohamed BM, Verma NK, Davies AM, McGowan A, Crosbie-Staunton K, Prina-Mello A, Kelleher D, Botting CH, Causey CP, Thompson PR, Pruijn GJ, Kisin ER, Tkach AV, Shvedova AA, Volkov Y (2012) Citrullination of proteins: a common post-translational modification pathway induced by different nanoparticles in vitro and in vivo. Nanomedicine (Lond) 7(8):1181–1195

    CAS  Google Scholar 

  • Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, Hsu DH, Le Pecq JB, Lyerly HK (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3(1):9

    PubMed  PubMed Central  Google Scholar 

  • Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3

  • Nordin JZ, Lee Y, Vader P, Mager I, Johansson HJ, Heusermann W, Wiklander OP, Hallbrink M, Seow Y, Bultema JJ, Gilthorpe J, Davies T, Fairchild PJ, Gabrielsson S, Meisner-Kober NC, Lehtio J, Smith CI, Wood MJ, Andaloussi SE (2015) Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine

  • Pachler K, Lener T, Streif D, Dunai ZA, Desgeorges A, Feichtner M, Oller M, Schallmoser K, Rohde E, Gimona M (2017) A good manufacturing practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles. Cytotherapy 19(4):458–472

    PubMed  Google Scholar 

  • Pan Q, Ramakrishnaiah V, Henry S, Fouraschen S, de Ruiter PE, Kwekkeboom J, Tilanus HW, Janssen HL, van der Laan LJ (2012) Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi). Gut 61(9):1330–1339

    CAS  PubMed  Google Scholar 

  • Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A, Colone M, Tatti M, Sargiacomo M, Fais S (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284(49):34211–34222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel S, Mehta-Damani A, Shu H, Le Pecq JB (2005) An analysis of variability in the manufacturing of dexosomes: implications for development of an autologous therapy. Biotechnol Bioeng 92(2):238–249

    CAS  PubMed  Google Scholar 

  • Peng Q, Zhang S, Yang Q, Zhang T, Wei XQ, Jiang L, Zhang CL, Chen QM, Zhang ZR, Lin YF (2013) Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials 34(33):8521–8530

    CAS  PubMed  Google Scholar 

  • Pullan JE, Confeld MI, Osborn JK, Kim J, Sarkar K, Mallik S (2019) Exosomes as drug carriers for Cancer therapy. Mol Pharm 16(5):1789–1798

    CAS  PubMed  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reis S, Lucio M, Segundo M, Lima JL (2010) Use of liposomes to evaluate the role of membrane interactions on antioxidant activity. Methods Mol Biol 606:167–188

    CAS  PubMed  Google Scholar 

  • Ren YX, Hao S, Jin X, Ye FG, Gong Y, Jiang YZ, Shao ZM (2019) Effects of adjuvant chemotherapy in T1N0M0 triple-negative breast cancer. Breast 43:97–104

    PubMed  Google Scholar 

  • Rice TF, Donaldson B, Bouqueau M, Kampmann B, Holder B (2018) Macrophage- but not monocyte-derived extracellular vesicles induce placental pro-inflammatory responses. Placenta 69:92–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, Pereira de Almeida L (2017) Extracellular vesicles: novel promising delivery systems for therapy of brain diseases. J Control Release 262:247–258

    CAS  PubMed  Google Scholar 

  • Saleh AF, Lazaro-Ibanez E, Forsgard MA, Shatnyeva O, Osteikoetxea X, Karlsson F, Heath N, Ingelsten M, Rose J, Harris J, Mairesse M, Bates SM, Clausen M, Etal D, Leonard E, Fellows MD, Dekker N, Edmunds N (2019) Extracellular vesicles induce minimal hepatotoxicity and immunogenicity. Nanoscale 11(14):6990–7001

    CAS  PubMed  Google Scholar 

  • Schindler C, Collinson A, Matthews C, Pointon A, Jenkinson L, Minter RR, Vaughan TJ, Tigue NJ (2019) Exosomal delivery of doxorubicin enables rapid cell entry and enhanced in vitro potency. PLoS One 14(3):e0214545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sena-Esteves M, Tebbets JC, Steffens S, Crombleholme T, Flake AW (2004) Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 122(2):131–139

    CAS  PubMed  Google Scholar 

  • Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV (2013) Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 11:88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singhto N, Kanlaya R, Nilnumkhum A, Thongboonkerd V (2018) Roles of macrophage Exosomes in immune response to calcium oxalate monohydrate crystals. Front Immunol 9:316

    PubMed  PubMed Central  Google Scholar 

  • Sorolla A, Wang E, Clemons TD, Evans CW, Plani-Lam JH, Golden E, Dessauvagie B, Redfern AD, Swaminathan-Iyer K, Blancafort P (2019) Triple-hit therapeutic approach for triple negative breast cancers using docetaxel nanoparticles, EN1-iPeps and RGD peptides. Nanomedicine

  • Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18(9):1606–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taheri, B., M. Soleimani, S. Fekri Aval, E. Esmaeili, Z. Bazi and N. Zarghami (2018). "Induced pluripotent stem cell-derived extracellular vesicles: A novel approach for cell-free regenerative medicine." J Cell Physiol

  • Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35(7):2383–2390

    CAS  PubMed  Google Scholar 

  • Valcourt, D. M., M N Dang and E. S. Day (2019). "IR820-loaded PLGA nanoparticles for photothermal therapy of triple-negative breast cancer." J Biomed Mater Res A

  • Veronese FM, Caliceti P, Schiavon O, Sergi M (2002) Polyethylene glycol-superoxide dismutase, a conjugate in search of exploitation. Adv Drug Deliv Rev 54(4):587–606

    CAS  PubMed  Google Scholar 

  • Wahlgren J, De LKT, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40(17):e130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh EM, Shalaby A, O'Loughlin M, Keane N, Webber MJ, Kerin MJ, Keane MM, Glynn SA, Callagy GM (2019) Outcome for triple negative breast cancer in a retrospective cohort with an emphasis on response to platinum-based neoadjuvant therapy. Breast Cancer Res Treat 174(1):1–13

    CAS  PubMed  Google Scholar 

  • Yoshida K, Burton GF, McKinney JS, Young H, Ellis EF (1992) Brain and tissue distribution of polyethylene glycol-conjugated superoxide dismutase in rats. Stroke 23(6):865–869

    CAS  PubMed  Google Scholar 

  • Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E, Kabanov AV (2017) Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142:1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19

    PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Ji M, Zhou J, Jin J, Xue N, Chen J, Xu B, Chen X (2016) Poly (ADP-ribose) polymerases inhibitor, Zj6413, as a potential therapeutic agent against breast cancer. Biochem Pharmacol 107:29–40

    CAS  PubMed  Google Scholar 

  • Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Elsa U Pardee Foundation grant 17-4676 (to EVB), Eshelman Institute for Innovation grant UNC EII29-201 (to EVB), and the Russian Foundation for Basic Research (RFBR) grants 17-54-33027 and 18-29-09154 (to NLK). We would like to acknowledge the support of the UNC Nanomedicine Characterization Core Facility (http://ncore.web.unc.edu) in the EVs characterization.

Author information

Authors and Affiliations

Authors

Contributions

EVB wrote and edited the manuscript. MJH and YZ contributed to the production of EVs used in these experiments. MJH, YZ, YSJ, SML, and JRB carried out experiments and contributed to data analysis. NLK and AVK contributed to the overall direction and coordination of the study as well as contributions to experimental design and data analysis.

Corresponding author

Correspondence to Elena V. Batrakova.

Ethics declarations

Conflict of Interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haney, M.J., Zhao, Y., Jin, Y.S. et al. Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy. J Neuroimmune Pharmacol 15, 487–500 (2020). https://doi.org/10.1007/s11481-019-09884-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-019-09884-9

Keywords

Navigation