Skip to main content
Log in

Luminescence Enhancement Mechanism of Lanthanide-Doped Hybrid Nanostructures Decorated by Silver Nanocrystals

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Hybrid nanostructures composed of rare earth ion-doped lanthanum trifluoride nanocrystals deposited on silica nanospheres (LaF3:Yb3+, Er3+@SiO2) and decorated with varying quantities of silver nanoparticles (Ag NPs) were synthesized using a simple strategy. Down and upconversion luminescence spectra were recorded. The luminescence dynamics were also recorded following excitation with a 532-nm pulse. Silver loading was found to have a significant effect both on the luminescence intensity and the luminescence decay rate, with the samples with the lowest silver content showing reduced luminescence intensity over silver-free samples, while the samples with large levels of silver loading showed significant luminescence enhancement. The results were successfully (and quantitatively) interpreted in terms of the competition between surface plasmon-induced field enhancement mediated by the Ag nanoparticles and nonradiative energy transfer from the luminescent ions to Ag nanoparticles. By combining the measured luminescence intensity with the luminescence decay rate determined from the dynamics measurements, and with the measured surface plasmon absorption spectra, one could obtain a quantitative and self-consistent understanding of the observed dependence of the green 4S3/24I15/2 (~540 nm) and red 4F9/24I15/2 (~650) emission bands on the Ag NP metal loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Marques-Hueso J, Chen DQ, MacDougall SKW, Wang YS, Richards BS (2011) Advances in spectral conversion for photovoltaics: up-converting Er3+ doped YF3 nanocrystals in transparent glass ceramic. Proc SPIE 8111:811102–881111

    Article  Google Scholar 

  2. Zheng T, Sun LD, Zhou JC, Feng W, Zhang C, Yan CH (2013) Construction of NaREF4 based binary and bilayer nanocrystal assemblies. Chem Commun 49:5799–5801

    Article  CAS  Google Scholar 

  3. Matsuura D (2002) Red, green, and blue upconversion luminescence of trivalent-rare-earth ion-doped Y2O3 nanocrystals. Appl Phys Lett 81:4526–4528

    Article  CAS  Google Scholar 

  4. Li XJ, Hou ZY, Ma PA, Zhang X, Li CX, Cheng ZY, Dai YL, Lian JS, Lin J (2013) Multifunctional NaYF4:Yb/Er/Gd nanocrystal decorated SiO2 nanotubes for anti-cancer drug delivery and dual modal imaging. RSC Adv 3:8517–8626

    Article  CAS  Google Scholar 

  5. Wang Y, Ji L, Zhang BB, Yin PH, Qiu YY, Song DQ, Zhou JY, Li Q (2013) Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging. Nanotechnology 24:175101

    Article  Google Scholar 

  6. Mertens H, Polman A (2006) Plasmon-enhanced erbium luminescence. Appl Phys Lett 89:211107

    Article  Google Scholar 

  7. Li P, Peng Q, Li YD (2009) Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals. Adv Mater 21:1945–1948

    Article  CAS  Google Scholar 

  8. Meijer JM, Aarts L, van der Ende BM, Vlugt TJH, Meijerink A (2007) Downconversion for solar cells in YF3:Nd3+, Yb3+. Phys Rev B 81:035107

    Article  Google Scholar 

  9. Chen GY, Somesfalean G, Liu Y, Zhang ZG, Sun Q, Wang FP (2007) Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystals. Phys Rev B 75:195204

    Article  Google Scholar 

  10. Liu CH, Wang H, Li X, Chen DP (2009) Monodisperse, size-tunable and highly efficient β-NaYF4:Yb, Er(Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications. J Mater Chem 19:3546–3553

    Article  CAS  Google Scholar 

  11. He EJ, Zheng HR, Zhang ZL, Zhang XS, Xu LM, Fu ZX, Lei Y (2010) Influence of crystal structure on the fluorescence emission of Eu3+:LaOF nanocrystals. J Nanosci Nanotechno 10:1908–1912

    Article  CAS  Google Scholar 

  12. Li DY, Wang YX, Zhang XR, Dong HX, Liu L, Shi G, Song YL (2012) Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals. J Appl Phys 112:094701

    Article  Google Scholar 

  13. Fujii M, Nakano T, Imakita K, Hayashi S (2013) Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells. J Phys Chem C 117:1113–1120

    Article  CAS  Google Scholar 

  14. Zhao P, Zhu YH, Yang XL, Fan KC, Shen JH, Li CZ (2012) Facile synthesis of upconversion luminescent mesoporous Y2O3:Er microspheres and metal enhancement using gold nanoparticles. RSC Adv 2:10592–10597

    Article  CAS  Google Scholar 

  15. Zhang H, Li YJ, Ivanov IA, Qu YQ, Huang Y, Duan XF (2010) Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew Chem Int Ed 49:2865–2868

    Article  CAS  Google Scholar 

  16. Priyam A, Idris NM, Zhang Y (2012) Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and dark field imaging. J Mater Chem 22:960–965

    Article  CAS  Google Scholar 

  17. Saboktakin M, Ye XC, Ju Oh S, Hong SH, Fafarman AT, Chettiar UK, Engheta N, Murray CB, Kagan CR (2012) Metal-enhanced upconversion luminescence tunable through metal nanoparticle nanophosphor separation. ACS Nano 6:8758–8766

    Article  CAS  Google Scholar 

  18. Feng W, Sun LD, Yan CH (2009) Ag nanowires enhanced upconversion emission of NaYF4:Yb, Er nanocrystals via a direct assembly method. Chem Commun 29:4393–4395

    Article  Google Scholar 

  19. Sudheendra L, Ortalan V, Dey S, Browning ND, Kennedy IM (2011) Plasmonic enhanced emissions from cubic NaYF4:Yb:Er/Tm nanophosphors. Chem Mater 23:2987–2993

    Article  CAS  Google Scholar 

  20. Li ZQ, Chen S, Li JJ, Liu QQ, Sun Z, Wang ZB, Huang SM (2012) Plasmon-enhanced upconversion fluorescence in NaYF4:Yb/Er/Gd nanorods coated with Au nanoparticles or nanoshells. J Appl Phys 111:014310

    Article  Google Scholar 

  21. Liu N, Qin WP, Qin GS, Jiang T, Zhao D (2011) Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb, Tm hybrid nanostructures. Chem Commun 47:7671–7673

    Article  CAS  Google Scholar 

  22. Chance RR, Prock A, Silbey R (1978) Molecular fluorescence and energy transfer near interfaces. Adv Chem Phys 7:1–65

    Google Scholar 

  23. Pustovit VN, Shahbazyan TV (2012) Fluorescence quenching near small metal nanoparticles. J Chem Phys 136:204701

    Article  CAS  Google Scholar 

  24. Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12:121–129

    Article  Google Scholar 

  25. Weitz DA, Garoff S, Gersten JI, Nitzan A (1983) The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. J Chem Phys 78:5324–5338

    Article  CAS  Google Scholar 

  26. Fischer S, Hallermann F, Eichelkraut T, von Plessen G, Krämer KW, Biner D, Steinkemper H, Hermle M, Goldschmid JC (2012) Plasmon enhanced upconversion luminescence near gold nanoparticles—simulation and analysis of the interactions. Opt Express 20:271–282

    Article  CAS  Google Scholar 

  27. Rivera VAG, Osorio SPA, Ledemi Y, Manzani D, Messaddeq Y, Nunes LAO, Marega JE (2010) Localized surface plasmon resonance interaction with Er3+-doped tellurite glass. Opt Express 18:25321–25328

    Article  CAS  Google Scholar 

  28. Stöber W, Fink A, Bohn EJ (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  29. Zheng WZ, Pan HC, Chi ZY, Chen HJ (2012) The ultrasonic wave-assisted preparation and modification by KH-550 of SiO2 aerogels. Adv Mater Res 554–556:580–583

    Article  Google Scholar 

  30. Chen R, Nuhfer NT, Moussa L, Morris HR, Whitmore PM (2008) Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas. Nanotechnology 19:455604–455611

    Article  Google Scholar 

  31. Pelton M, Aizpurua J, Bryant G (2008) Metal-nanoparticle plasmonics. Laser Photon Rev 2:136–159

    Article  CAS  Google Scholar 

  32. Coronado EA, Encina ER, Stefani FD (2011) Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. Nanoscale 3:4042–4059

    Article  CAS  Google Scholar 

  33. Musić S, Filipović-Vinceković N, Sekovanić L (2011) Precipitation of amorphous SiO2 particles and their properties. Braz J Chem Eng 28:89–94

    Google Scholar 

  34. Bruneau AB, Fisson S, Vuye G, Rivory J (2000) Change of TO and LO mode frequency of evaporated SiO2 films during aging in air. J Appl Phys 87:7303–7309

    Article  Google Scholar 

  35. Pruthtikul R, Liewchirakorn P (2008) Correlation between siloxane bond formation and oxygen transmission rate in TEOS xerogel. J Metals Mater Mine 18:63–66

    Google Scholar 

  36. Pawlak DA, Ito M, Oku M, Shimamura K, Fukuda T (2002) Interpretation of XPS O (1s) in mixed oxides proved on mixed perovskite crystals. J Phys Chem B 106:504–507

    Article  CAS  Google Scholar 

  37. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  38. Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220:137–141

    Article  CAS  Google Scholar 

  39. Schmeits M, Dambly L (1991) Fast-electron scattering by bispherical surface-plasmon modes. Phys Rev B 44:12706–12712

    Article  Google Scholar 

  40. Weber MJ (1967) Probabilities for radiative and nonradiative decay of Er3+ in LaF3. Phys Rev 157:262–272

    Article  CAS  Google Scholar 

  41. Derom S, Berthelot A, Pillonner A, Benamara O, Jurdyc AM, Girard C, des Colas FG (2013) Metal enhanced fluorescence in rare earth doped plasmonic core–shell nanoparticles. Nanotechnology 24:495704

    Article  CAS  Google Scholar 

  42. Greeneltch NG, Blaber MG, Schatz GC, Van Duyne RP (2013) Plasmon-sampled surface-enhanced Raman excitation spectroscopy on silver immobilized nanorod assemblies and optimization for near infrared (λex = 1064 nm) studies. J Phys Chem C 117:2554–2558

    Article  CAS  Google Scholar 

  43. Moskovits M (2013) Persistent misconceptions regarding SERS. Phys Chem Chem Phys 15:5301–5311

    Article  CAS  Google Scholar 

  44. Kümmerlen J, Leitner A, Brunner H, Aussenegg FR, Wokaun A (1993) Enhanced dye fluorescence over silver island films: analysis of the distance dependence. Mol Phys 80:1031–1046

    Article  Google Scholar 

  45. Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70:3898–3905

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (11174190), the Natural Science Basus Research Plan in Shaanxi Province of China (2013JM1008), the Natural Science Foundation of Anhui Province (1308085MA11), and the Foundation from the Excellent Youth Talents Support Plan in Universities of Anhui Province (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, E.J., Moskovits, M., Dong, J. et al. Luminescence Enhancement Mechanism of Lanthanide-Doped Hybrid Nanostructures Decorated by Silver Nanocrystals. Plasmonics 10, 357–368 (2015). https://doi.org/10.1007/s11468-014-9817-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9817-x

Keywords

Navigation