Skip to main content
Log in

Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The Tibet ASγ experiment just reported their measurement of sub-PeV diffuse gamma-ray emission from the Galactic disk, with the highest energy up to 957 TeV. These diffuse gamma rays are most likely the hadronic origin by cosmic ray (CR) interaction with interstellar gas in the galaxy. This measurement provides direct evidence to the hypothesis that the Galactic Cosmic Rays (GCRs) can be accelerated beyond PeV energies. In this work, we try to explain the sub-PeV diffuse gamma-ray spectrum with different CR propagation models. We find that there is a tension between the sub-PeV diffuse gamma-ray and the local CR spectrum. To describe the sub-PeV diffuse gamma-ray flux, it generally requires larger local CR flux than measurement in the knee region. We further calculate the PeV neutrino flux from the CR propagation model. Even all of these sub-PeV diffuse gamma rays originate from the propagation, the Galactic Neutrinos (GNs) only account for less than ∼ 15% of observed flux, most of which are still from extragalactic sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Nagano, T. Hara, Y. Hatano, N. Hayashida, S. Kawaguchi, K. Kamata, T. Kifune, and Y. Mizumoto, Energy spectrum of primary cosmic rays between 1014.5 and 1018 eV, J. Phys. G 10(9), 1295 (1984)

    Article  ADS  Google Scholar 

  2. M. A. K. Glasmacher, M. A. Catanese, M. C. Chantell, et al., The cosmic ray energy spectrum between 1014 and 1016 eV, Astropart. Phys. 10(4), 291 (1999)

    Article  ADS  Google Scholar 

  3. M. Aglietta, B. Alessandro, P. Antonioli, F. Arneodo, L. Bergamasco, et al., The cosmic ray primary composition in the “knee” region through the EAS electromagnetic and muon measurements at EAS-TOP, Astropart. Phys. 21(6), 583 (2004)

    Article  ADS  Google Scholar 

  4. T. Antoni, W. D. Apel, A. F. Badea, K. Bekk, A. Bercuci, et al., KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems, Astropart. Phys. 24(1–2), 1 (2005)

    Article  ADS  Google Scholar 

  5. M. Amenomori, X. J. Bi, D. Chen, S. W. Cui, Danzengluobu, et al., The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 to 1017 eV observed with the Tibet-III air-shower array, Astrophys. J. 678(2), 1165 (2008)

    Article  ADS  Google Scholar 

  6. K. H. Kampert and M. Unger, Measurements of the cosmic ray composition with air shower experiments, Astropart. Phys. 35(10), 660 (2012)

    Article  ADS  Google Scholar 

  7. R. Aloisio, P. Blasi, I. De Mitri, and S. Petrera, Selected topics in cosmic ray physics, arXiv: 1707.06147 (2017)

  8. W. Baade and F. Zwicky, Cosmic rays from super-novae, Contributions from the Mount Wilson Observatory 3, 79 (1934)

    ADS  Google Scholar 

  9. R. Abbasi, Y. Abdou, T. Abu-Zayyad, M. Ackermann, J. Adams, et al., Observation of anisotropy in the Galactic cosmic-ray arrival directions at 400 TeV with IceCube, Astrophys. J. 746(1), 33 (2012)

    Article  ADS  Google Scholar 

  10. M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, et al., Anisotropy in cosmic-ray arrival directions in the southern hemisphere based on six years of data from the IceCube detector, Astrophys. J. 826(2), 220 (2016)

    Article  ADS  Google Scholar 

  11. M. Amenomori, X. J. Bi, D. Chen, T. L. Chen, W. Y. Chen, et al., Northern sky Galactic cosmic ray anisotropy between 10 and 1000 TeV with the Tibet air shower array, Astrophys. J. 836(2), 153 (2017)

    Article  ADS  Google Scholar 

  12. HESS Collaboration, Acceleration of petaelectronvolt protons in the Galactic centre, Nature 531(7595), 476 (2016)

    Article  ADS  Google Scholar 

  13. The Tibet ASγ Collaboration, M. Amenomori, Y. W. Bao, et al., Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays, Nat. Astron. 5, 460 (2021)

    Article  ADS  Google Scholar 

  14. A. U. Abeysekara, A. Albert, R. Alfaro, et al., HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon, arXiv: 2103.06820 (2021)

  15. DAMPE Collaboration, Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons, Nature 552(7683), 63 (2017)

    Article  ADS  Google Scholar 

  16. D. Kerszberg for the HESS Collaboration, The cosmic-ray electron spectrum measured with H.E.S.S. (2017)

  17. A. Borione, M. A. Catanese, M. C. Chantell, C. E. Covault, J. W. Cronin, et al., Constraints on gamma-ray emission from the Galactic plane at 300 TeV, Astrophys. J. 493(1), 175 (1998)

    Article  ADS  Google Scholar 

  18. W. D. Apel, J. C. Arteaga-Velázquez, K. Bekk, M. Bertaina, J. Blümer, et al., KASCADE-Grande limits on the isotropic diffuse gamma-ray flux between 100 TeV and 1 EeV, Astrophys. J. 848(1), 1 (2017)

    Article  ADS  Google Scholar 

  19. M. Amenomori, Y. W. Bao, X. J. Bi, D. Chen, T. L. Chen, et al., First detection of sub-PeV diffuse gamma rays from the Galactic disk: Evidence for ubiquitous Galactic cosmic rays beyond PeV energies, Phys. Rev. Lett. 126(14), 141101 (2021)

    Article  ADS  Google Scholar 

  20. R. Y. Liu and X. Y. Wang, Origin of Galactic sub PeV diffuse gamma-ray emission: Constraints from high-energy neutrino observations, Astrophys. J. Lett. 914(1), L7 (2021)

    Article  ADS  Google Scholar 

  21. V. Vecchiotti, F. Zuccarini, F. L. Villante, and G. Pagliaroli, Unresolved sources naturally contribute to PeV γ-ray diffuse emission observed by Tibet ASγ, arXiv: 2107.14584 (2021)

  22. S. Koldobskiy, A. Neronov, and D. Semikoz, Pion decay model of the Tibet-ASγ PeV gamma-ray signal, Phys. Rev. D 104(4), 043010 (2021)

    Article  ADS  Google Scholar 

  23. P. P. Zhang, B. Q. Qiao, Q. Yuan, S. W. Cui, and Y. Q. Guo, Ultrahigh-energy diffuse gamma ray emission from cosmic-ray interactions with the medium surrounding acceleration sources, Phys. Rev. D 105(2), 023002 (2022)

    Article  ADS  Google Scholar 

  24. IceCube Collaboration, Evidence for high-energy extraterrestrial neutrinos at the IceCube detector, Science 342(6161), 1242856 (2013)

    Article  Google Scholar 

  25. M. G. Aartsen, R. Abbasi, Y. Abdou, M. Ackermann, J. Adams, et al., First observation of PeV-energy neutrinos with IceCube, Phys. Rev. Lett. 111(2), 021103 (2013)

    Article  ADS  Google Scholar 

  26. M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, et al., Observation of high-energy astrophysical neutrinos in three years of IceCube data, Phys. Rev. Lett. 113(10), 101101 (2014)

    Article  ADS  Google Scholar 

  27. M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, et al., Time integrated neutrino source searches with 10 years of IceCube data, Phys. Rev. Lett. 124(5), 051103 (2020)

    Article  ADS  Google Scholar 

  28. M. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, et al., Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science 361(6398), eaat1378 (2018)

    Article  ADS  Google Scholar 

  29. M. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, et al., Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert, Science 361(6398), 147 (2018)

    Article  ADS  Google Scholar 

  30. M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, et al., A combined maximum-likelihood analysis of the high energy astrophysical neutrino flux measured with Ice Cube, Astrophys. J. 809(1), 98 (2015)

    Article  ADS  Google Scholar 

  31. Y. Q. Guo, H. B. Hu, Q. Yuan, Z. Tian, and X. J. Gao, Pinpointing the knee of cosmic rays with diffuse PeV γ-rays and neutrinos, Astrophys. J. 795(1), 100 (2014)

    Article  ADS  Google Scholar 

  32. P. Lipari and S. Vernetto, Diffuse Galactic gamma-ray flux at very high energy, Phys. Rev. D 98(4), 043003 (2018)

    Article  ADS  Google Scholar 

  33. Q. Yuan, S. J. Lin, K. Fang, and X. J. Bi, Propagation of cosmic rays in the AMS-02 era, Phys. Rev. D 95(8), 083007 (2017)

    Article  ADS  Google Scholar 

  34. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, et al., PAMELA measurements of cosmic-ray proton and helium spectra, Science 332(6025), 69 (2011)

    Article  ADS  Google Scholar 

  35. P. Blasi and E. Amato, Diffusive propagation of cos mic rays from supernova remnants in the Galaxy (II): Anisotropy, J. Cosmol. Astropart. Phys. 2012(1), 11 (2012)

    Article  Google Scholar 

  36. W. Liu, X. J. Bi, S. J. Lin, B. B. Wang, and P. F. Yin, Excesses of cosmic ray spectra from a single nearby source, Phys. Rev. D 96(2), 023006 (2017)

    Article  ADS  Google Scholar 

  37. N. Tomassetti, Origin of the cosmic-ray spectral hardening, Astrophys. J. Lett. 752(1), L13 (2012)

    Article  ADS  Google Scholar 

  38. W. Liu, Y.-Q. Guo, and Q. Yuan, Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies, J. Cosmol. Astropart. Phys. 2019(10), 010 (2019)

    Article  Google Scholar 

  39. B.-Q. Qiao, W. Liu, Y.-Q. Guo, and Q. Yuan, Anisotropies of different mass compositions of cosmic rays, J. Cosmol. Astropart. Phys. 2019(12), 007 (2019)

    Article  Google Scholar 

  40. Y. Q. Guo and Q. Yuan, Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation, Phys. Rev. D 97(6), 063008 (2018)

    Article  ADS  Google Scholar 

  41. Y. Q. Guo, Z. Tian, and C. Jin, Spatial-dependent propagation of cosmic rays results in the spectrum of proton, ratios of P/P, and B/C, and anisotropy of nuclei, Astrophys. J. 819, 54 (2016)

    Article  ADS  Google Scholar 

  42. W. Liu, Y. H. Yao, and Y. Q. Guo, Revisiting the spatially dependent propagation model with the latest observations of cosmic-ray nuclei, Astrophys. J. 869(2), 176 (2018)

    Article  ADS  Google Scholar 

  43. P. Blasi, E. Amato, and P. D. Serpico, Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy, Phys. Rev. Lett. 109(6), 061101 (2012)

    Article  ADS  Google Scholar 

  44. E. S. Seo and V. S. Ptuskin, Stochastic reacceleration of cosmic rays in the interstellar medium, Astrophys. J. 431, 705 (1994)

    Article  ADS  Google Scholar 

  45. G. Case and D. Bhattacharya, Revisiting the Galactic supernova remnant distribution, Astron. Astrophys. Suppl. 120, 437 (1996)

    Google Scholar 

  46. M. Ahlers, Deciphering the dipole anisotropy of Galactic cosmic rays, Phys. Rev. Lett. 117(15), 151103 (2016)

    Article  ADS  Google Scholar 

  47. M. Aguilar, L. A. Cavasonza, G. Ambrosi, et al., Precision measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the International Space Station, Phys. Rev. Lett. 117(23), 231102 (2016)

    Article  ADS  Google Scholar 

  48. Y. S. Yoon, T. Anderson, A. Barrau, N. B. Conklin, S. Coutu, et al., Proton and helium spectra from the CREAM-III flight, Astrophys. J. 839(1), 5 (2017)

    Article  ADS  Google Scholar 

  49. Q. An, R. Asfandiyarov, P. Azzarello, P. Bernardini, X. J. Bi, et al., Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5(9), eaax3793 (2019)

    Article  ADS  Google Scholar 

  50. M. Aguilar, D. Aisa, B. Alpat, A. Alvino, G. Ambrosi, et al., Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the International Space Station, Phys. Rev. Lett. 114(17), 171103 (2015)

    Article  ADS  Google Scholar 

  51. M. Aguilar, L. A. Cavasonza, B. Alpat, et al., Observation of the identical rigidity dependence of He, C, and O cosmic rays at high rigidities by the alpha magnetic spectrometer on the International Space Station, Phys. Rev. Lett. 119(25), 251101 (2017)

    Article  ADS  Google Scholar 

  52. E. Atkin, V. Bulatov, V. Dorokhov, N. Gorbunov, S. Filippov, et al., First results of the cosmic ray NUCLEON experiment, J. Cosmol. Astropart. Phys. 07, 020 (2017)

    Article  ADS  Google Scholar 

  53. W. D. Apel, J. C. Arteaga-Velázquez, K. Bekk, M. Bertaina, J. Blümer, et al., KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays, Astropart. Phys. 47, 54 (2013)

    Article  ADS  Google Scholar 

  54. M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, et al., Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube, Phys. Rev. D 100(8), 082002 (2019)

    Article  ADS  Google Scholar 

  55. J. C. Arteaga-Velázquez, HAWC measurements of the energy spectra of cosmic ray protons, helium and heavy nuclei in the TeV range, arXiv: 2108.03208 (2021)

  56. J. R. Hörandel, On the knee in the energy spectrum of cosmic rays, Astropart. Phys. 19(2), 193 (2003)

    Article  ADS  Google Scholar 

  57. M. G. Aartsen, R. Abbasi, M. Ackermann, J. Adams, J. A. Aguilar, et al., Cosmic ray spectrum from 250 TeV to 10 PeV using IceTop, Phys. Rev. D 102(12), 122001 (2020)

    Article  ADS  Google Scholar 

  58. R. Alfaro, C. Alvarez, J. D. Álvarez, R. Arceo, J. C. Arteaga-Velázquez, et al., All particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV, Phys. Rev. D 96(12), 122001 (2017)

    Article  ADS  Google Scholar 

  59. G. Di Sciascio, Measurement of the Cosmic Ray Energy Spectrum with ARGO-YBJ, arXiv: 1408.6739 (2014)

  60. A. D. Panov, J. H. Jr Adams, H. S. Ahn, G. L. Bashinzhagyan, et al., Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results, Bull. Russ. Acad. Sci, Physics 73(5), 564 (2009)

    Article  ADS  Google Scholar 

  61. E. V. Atkin, V. L. Bulatov, O. A. Vasiliev, A. G. Voronin, N. V. Gorbunov, et al., Energy Spectra of Cosmic-Ray Protons and Nuclei Measured in the NUCLEON Experiment Using a New Method, Astron. Rep. 63(1), 66 (2019)

    Article  ADS  Google Scholar 

  62. J.-L. Zhang, X.-J. Bi, and H.-B. Hu, Very high energy γ ray absorption by the Galactic interstellar radiation field, Astron. & Astrophys. 449, 641 (2006)

    Article  ADS  Google Scholar 

  63. I. V. Moskalenko, T. A. Porter, and A. W. Strong, Attenuation of very high energy gamma rays by the milky way interstellar radiation field, Astrophys. J. 640(2), L155 (2006)

    Article  ADS  Google Scholar 

  64. B. Bartoli, P. Bernardini, X. J. Bi, P. Branchini, A. Budano, et al., Study of the diffuse gamma-ray emission from the Galactic plane with ARGO-YBJ, Astrophys. J. 806(1), 20 (2015)

    Article  ADS  Google Scholar 

  65. M. D. Kistler and J. F. Beacom, Guaranteed and prospective Galactic TeV neutrino sources, Phys. Rev. D 74(6), 063007 (2006)

    Article  ADS  Google Scholar 

  66. R. Abbasi, M. Ackermann, J. Adams, et al., The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data, arXiv: 2011.03545 (2020)

  67. S. Adrián-Martínez, A. Albert, M. André, M. Anghinolfi, G. Anton, et al., Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope, Phys. Lett. B 760, 143 (2016)

    Article  ADS  Google Scholar 

  68. M. G. Aartsen, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, et al., Constraints on Galactic neutrino emission with seven years of IceCube data, Astrophys. J. 849(1), 67 (2017)

    Article  ADS  Google Scholar 

  69. F. Aharonian, R. Yang, and E. de Oña Wilhelmi, Massive stars as major factories of Galactic cosmic rays, Nat. Astron. 3(6), 561 (2019)

    Article  ADS  Google Scholar 

  70. P. Cristofari, The hunt for pevatrons: The case of supernova remnants, Universe 7(9), 324 (2021)

    Article  ADS  Google Scholar 

  71. A. M. Bykov, D. C. Ellison, P. E. Gladilin, and S. M. Osipov, Ultrahard spectra of PeV neutrinos from supernovae in compact star clusters, Mon. Not. R. Astron. Soc. 453(1), 113 (2015)

    Article  ADS  Google Scholar 

  72. A. M. Bykov, A. E. Petrov, M. E. Kalyashova, and S. V. Troitsky, PeV photon and neutrino flares from Galactic gamma-ray binaries, Astrophys. J. Lett. 921(1), L10 (2021)

    Article  ADS  Google Scholar 

  73. R. Yang, F. Aharonian, and C. Evoli, Radial distribution of the diffuse γ-ray emissivity in the Galactic disk, Phys. Rev. D 93(12), 123007 (2016)

    Article  ADS  Google Scholar 

  74. A. W. Strong and I. V. Moskalenko, Propagation of cosmic-ray nucleons in the galaxy, Astrophys. J. 509(1), 212 (1998)

    Article  ADS  Google Scholar 

  75. A. W. Strong, I. V. Moskalenko, and O. Reimer, Diffuse continuum gamma rays from the galaxy, Astrophys. J. 537(2), 763 (2000)

    Article  ADS  Google Scholar 

  76. C. Evoli, D. Gaggero, D. Grasso, and L. Maccione. Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: A new diffusion model, J. Cosmol. Astropart. Phys. 10, 018 (2008)

    Article  ADS  Google Scholar 

  77. C. Evoli, D. Gaggero, A. Vittino, G. Di Bernardo, M. Di Mauro, et al., Cosmic-ray propagation with DRAGON2 (I): Numerical solver and astrophysical ingredients, J. Cosmol. Astropart. Phys. 02, 015 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0400200), the National Natural Science Foundation of China (Nos. U1738209, 11875264, 11635011, U2031110).

Software: GALPROP ([74, 75]) available at https://galprop.stanford.edu.

DRAGON ([76, 77]) available at https://github.com/cosmicrays.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or Meng-Jie Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, BQ., Liu, W., Zhao, MJ. et al. Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission. Front. Phys. 17, 44501 (2022). https://doi.org/10.1007/s11467-022-1160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1160-7

Keywords

Navigation