Skip to main content
Log in

Calibrating and validating a soil constitutive model through conventional triaxial tests: an in-depth study on CSUH model

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents an approach for calibrating and validating a constitutive model via conventional triaxial tests. First, the consolidated drained triaxial compression test results are used for model calibration. The particle swarm optimization algorithm based on multiple adaptive strategies is then adopted to calibrate the best fitting parameters. Subsequently, the constitutive model is validated by considering its performance in modeling the consolidated undrained triaxial tests. The unified hardening model for clays and sands (CSUH model) proposed by Yao et al. (Comput Geotech 110:326–343, 2019. 10.1016/j.compgeo.2019.02.024) is considered. The results demonstrate that the CSUH model can well describe the dilatancy of clays and sands with different densities in both drained and undrained triaxial tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(C_{ij}\) :

The element of elastic matrix \(\left[ {C_{ij}^{e} } \right]\) or elastoplastic matrix \(\left[ {C_{ij}^{ep} } \right]\); i and j = 1, 2, 3

e :

Current void ratio

e 0 :

Initial void ratio

e c0 :

Void ratio on the critical state line (CSL) at p′ = 0 kPa

E :

Elastic modulus

H :

Hardening parameter

m :

Dilatancy parameter

M :

Critical state stress ratio: slope of CSL in p′–q coordinates

M c :

Characteristic state stress ratio

M f :

Potential failure stress ratio

MRE :

Assessment criteria: mean relative error

N :

Void ratio of the asymptote of normal compression line (RNCL) at p′ = 1 kPa in the e ~ lnp′ coordinates

p′:

Mean effective stress \(p^{\prime} = \frac{{\sigma^{\prime}_{1} + 2\sigma^{\prime}_{3} }}{3}\) in conventional compression test

\(p^{\prime}_{x}\) :

Intersection of current yield surface with the p′-axis

\(p^{\prime}_{x0}\) :

Initial value of \(p^{\prime}_{x}\)

p s :

Compressive hardening parameter

\(p^{\prime}_{y}\) :

Intersection of plastic potential surface with the p′-axis

q :

Deviatoric stress \(q = \left( {\sigma^{\prime}_{1} - \sigma^{\prime}_{3} } \right)\) in conventional compression test

R :

Assessment criteria: the determination coefficient

R :

Search area of exemplar Xi

u :

Excess pore pressure

V i :

Velocity of exemplar

X i :

Exemplar or potential solution of the optimization problem

Z :

The void ratio of the normal compression line (NCL) at p′ = 1 kPa for sands in the e ~ lnp′ coordinates

κ :

Slope of the unloading line in the e ~ ln(p′ + ps) coordinates

λ :

Slope of the NCL in the e ~ ln(p′ + ps) coordinates, is also the slope of the RNCL in the e ~ lnp′ coordinates

η :

Stress ratio \(\eta = \frac{q}{{p^{\prime}}}\)

ν :

Poisson’s ratio

χ :

Critical state parameter

ξ :

State variable describing the current density

ε i :

The maximum, medium and minimum principal strain when i = 1, 2, and 3, respectively

\(\varepsilon_{v}\) :

Volumetric strain

\(\varepsilon_{v}^{p}\) :

Plastic (unrecoverable) volumetric strain

\(\sigma^{\prime}_{j}\) :

The maximum, medium and minimum effective principal stress when j = 1, 2, 3, respectively

\(\sigma^{\prime}_{3i}\) :

Initial confine pressure in the shear stage

\(\sigma^{\prime}_{c}\) :

Pre-consolidation pressure

Λ :

Total error: the average value of all individual error MRE(Xi)

Δε i :

The ith principal strain increment, i = 1, 2, 3

\(\Delta \sigma^{\prime}_{j}\) :

The jth principal stress increment, j = 1, 2, 3

References

  1. Calvello M, Finno RJ (2004) Selecting parameters to optimize in model calibration by inverse analysis. Comput Geotechn 31(5):410–424

    Article  Google Scholar 

  2. Chen ZY, Zhang YP, Li JB, Li X, Jing LJ (2021) Diagnosing tunnel collapse sections based on TBM tunneling big data and deep learning: a case study on the Yinsong Project, China. Tunnel Undergr Space Technol 108:103700. https://doi.org/10.1016/j.tust.2020.103700

    Article  Google Scholar 

  3. Eberhart R, Kennedy J A new optimizer using particle swarm theory. In: MHS'95. Proceedings of the sixth international symposium on micro machine and human science, 1995. IEEE, pp 39–43

  4. Gao ZW, Zhao JD, Li XS, Dafalias YF (2014) A critical state sand plasticity model accounting for fabric evolution. Int J Numer Anal Methods Geomech 38(4):370–390

    Article  Google Scholar 

  5. Gercek H (2007) Poisson’s ratio values for rocks. Int J Rock Mech Min Sci 44(1):1–13. https://doi.org/10.1016/j.ijrmms.2006.04.011

    Article  Google Scholar 

  6. Gras JP, Sivasithamparam N, Karstunen M, Dijkstra J (2017) Strategy for consistent model parameter calibration for soft soils using multi-objective optimisation. Comput Geotechn 90:164–175

    Article  Google Scholar 

  7. Han J, Yin Z-Y, Dano C, Hicher P-Y (2021) Cyclic and creep combination effects on the long-term undrained behavior of overconsolidated clay. Acta Geotech 16(4):1027–1041

    Article  Google Scholar 

  8. Han J, Yin Z-Y, Dano C, Hicher P-Y (2021) Effect of strain rate on the adhesive bond shearing resistance of stiff clay. Transp Geotechn 27:100479

  9. Hashiguchi K, Chen ZP (1998) Elastoplastic constitutive equation of soils with the subloading surface and the rotational hardening. Int J Numer Anal Methods Geomech 22(3):197–227

    Article  Google Scholar 

  10. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, London

  11. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks. IEEE, pp 1942–1948

  12. Lade PV (1977) Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int J Solids Struct 13(11):1019–1035

    Article  Google Scholar 

  13. Lade PV, Duncan JM (1975) Elastoplastic stress–strain theory for cohesionless soil. J Geotech Eng Div 101(10):1037–1053

    Article  Google Scholar 

  14. Lade PV, Kim MK (1995) Single hardening constitutive model for soil, rock and concrete. Int J Solids Struct 32(14):1963–1978. https://doi.org/10.1016/0020-7683(94)00247-t

    Article  MATH  Google Scholar 

  15. Lade PV (2005) Overview of constitutive models for soils. In: Soil constitutive models: Evaluation, selection, and calibration, pp 1–34

  16. Levasseur S, Malécot Y, Boulon M, Flavigny E (2008) Soil parameter identification using a genetic algorithm. Int J Numer Anal Methods Geomech 32(2):189–213

    Article  Google Scholar 

  17. Liu EL, Tan YL, Chen SS, Li GY (2012) Investigation on critical state of rockfill materials. J Hydraul Eng 43(5):505–511 (in Chinese)

    Google Scholar 

  18. Luo T, Chen D, Yao YP, Zhou AN (2020) An advanced UH model for unsaturated soils. Acta Geotech 15(1):145–164. https://doi.org/10.1007/s11440-019-00882-y

    Article  Google Scholar 

  19. Marto A, Tan CS, Makhtar AM, Kung Leong T (2014) Critical state of sand matrix soils. Sci World J 2014

  20. Matsuoka H, Yao YP, Sun DA (1999) The Cam-Clay models revised by the SMP criterion. Soils Found 39(1):81–95

    Article  Google Scholar 

  21. Nakai T (1989) An isotropic hardening elastoplastic model for sand considering the stress path dependency in three-dimensional stresses. Soils Found 29(1):119–137

    Article  Google Scholar 

  22. Nakai T, Matsuoka H (1986) A generalized elastoplastic constitutive model for clay in three-dimensional stresses. Soils Found 26(3):81–98

    Article  Google Scholar 

  23. Pal S, Wathugala GW, Kundu S (1996) Calibration of a constitutive model using genetic algorithms. Comput Geotechn 19(4):325–348

    Article  Google Scholar 

  24. Papon A, Riou Y, Dano C, Hicher PY (2012) Single-and multi-objective genetic algorithm optimization for identifying soil parameters. Int J Numer Anal Methods Geomech 36(5):597–618

    Article  Google Scholar 

  25. Pestana JM, Whittle AJ, Gens A (2002) Evaluation of a constitutive model for clays and sands: Part II–clay behaviour. Int J Numer Analy Methods Geomech 26(11):1123–1146

    Article  Google Scholar 

  26. Pestana JM, Whittle AJ, Salvati LA (2002) Evaluation of a constitutive model for clays and sands: part I–sand behaviour. Int J Numer Anal Methods Geomech 26(11):1097–1121

    Article  Google Scholar 

  27. Roscoe K, Schofield A, Thurairajah A (1963) Yielding of clays in states wetter than critical. Geotechnique 13(3):211–240

    Article  Google Scholar 

  28. Roscoe KH, Burland JB (1968) On the generalized stress–strain behaviour of ‘wet clay’. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge

  29. Roscoe KH (1963) Mechanical behaviour of an idealized 'wet' clay. Proc 3rd Eur Conf Soil Mech Wiesbaden 1:47–54

  30. Russell AR, Khalili N (2004) A bounding surface plasticity model for sands exhibiting particle crushing. Can Geotech J 41(6):1179–1192

    Article  Google Scholar 

  31. SadoghiYazdi J, Kalantary F, SadoghiYazdi H (2012) Calibration of soil model parameters using particle swarm optimization. Int J Geomech 12(3):229–238

    Article  Google Scholar 

  32. Schofield A, Wroth P (1968) Critical state soil mechanics. McGraw-hill, London

    Google Scholar 

  33. Soleimanbeigi A (2013) Undrained shear strength of normally consolidated and overconsolidated clays from pressuremeter tests: a case study. Geotechn Geol Eng 31(5):1511–1524

    Article  Google Scholar 

  34. Sun DA, Sheng DC, Sloan SW (2007) Elastoplastic modelling of hydraulic and stress–strain behaviour of unsaturated soils. Mech Mater 39(3):212–221

    Article  Google Scholar 

  35. Tekeste MZ, Habtzghi DH, Koolen J (2013) Cap-hardening parameters of Cam-Clay model variations with soil moisture content and shape-restricted regression model. Agric Eng Int CIGR J 15(2):10–24

    Google Scholar 

  36. Ti KS, Huat BB, Noorzaei J, Jaafar MS, Sew GS (2009) A review of basic soil constitutive models for geotechnical application. Electron J Geotech Eng 14:1–18

    Google Scholar 

  37. Wang S, Wu W (2021) A simple hypoplastic model for overconsolidated clays. Acta Geotech 16(1):21–29

    Article  Google Scholar 

  38. Wang S, Wu W (2021) Validation of a simple hypoplastic constitutive model for overconsolidated clays. Acta Geotech 16(1):31–41

    Article  Google Scholar 

  39. Wang S, Wu W, Zhang D, Kim JR (2020) Extension of a basic hypoplastic model for overconsolidated clays. Comput Geotechn 123:103486

  40. Wei B, Xia XW, Yu F, Zhang YL, Xu X, Wu HR, Gui L, He GL (2020) Multiple adaptive strategies based particle swarm optimization algorithm. Swarm Evolut Comput 57:100731

  41. Whittle A (1993) Evaluation of a constitutive model for overconsolidated clays. Geotechnique 43(2):289–313

    Article  MathSciNet  Google Scholar 

  42. Wroth C, Houlsby G (1985) Soil mechanics-property characterization and analysis procedures, UK

  43. Yao YP, Feng X, Huang X, Li CL (2010) Application of UH model to finite element analysis. Rock Soil Mech 31(1):237–245 (in Chinese)

    Google Scholar 

  44. Yao YP, Gao ZW, Zhao JD, Wan Z (2012) Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic Hvorslev envelope. J Geotechn Geoenviron Eng 138(7):860–868

    Article  Google Scholar 

  45. Yao YP, Hou W, Zhou AN (2008) Constitutive model for overconsolidated clays. Sci China Ser E Technol Sci 51(2):179–191

    Article  Google Scholar 

  46. Yao YP, Hou W, Zhou AN (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Géotechnique 59(5):451–469. https://doi.org/10.1680/geot.2007.00029

    Article  Google Scholar 

  47. Yao YP, Kong LM, Zhou AN, Yin JH (2015) Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays. J Eng Mech 141(6):04014162

    Article  Google Scholar 

  48. Yao YP, Liu L, Luo T, Tian Y, Zhang JM (2019) Unified hardening (UH) model for clays and sands. Comput Geotech 110:326–343. https://doi.org/10.1016/j.compgeo.2019.02.024

    Article  Google Scholar 

  49. Yao YP, Lu DC, Zhou AN, Zou B (2004) Generalized non-linear strength theory and transformed stress space. Sci China Ser E: Technol Sci 47(6):691–709

    Article  Google Scholar 

  50. Yao YP, Sun DA, Matsuoka H (2008) A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput Geotechn 35(2):210–222

    Article  Google Scholar 

  51. Yao YP, Zhou AN (2013) Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays. Géotechnique 63(15):1328–1345

    Article  Google Scholar 

  52. Yao YP, Deng N, Liu L, Shu WJ, He G (2017) Application of the UH Model into Settlement Prediction of Rockfill Dam. 15th IACMAG

  53. Yao YP, Huang J, Zhang K, Cui GZ (2020) Numerical back-analysis of creep settlement of airport high fill. Rock Soil Mech 41 (10):3395–3404+3414. https://doi.org/10.16285/j.rsm.2020.0402(in Chinese)

  54. Yin ZY, Jin YF, Shen JS, Hicher PY (2018) Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. Int J Numer Anal Methods Geomech 42(1):70–94

    Article  Google Scholar 

  55. Zhao XL, Zhu JG, Bian HB (2019) Applicability of UH model to coarse-grained soil. MATEC Web Conf 295(1):03007

    Article  Google Scholar 

  56. Zhu BL, Su XX, Cao YQ, Yan FX (2020) Determining parameters of the CSUH constitutive model by genetic algorithm. Jpn Geotechn Soc Spec Publ 8(6):188–193

    Google Scholar 

  57. Zhu EY, Yao YP (2015) Structured UH model for clays. Transp Geotechn 3:68–79

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (Grant No. 2018YFE0207100), the National Natural Science Foundation of China (Grant No. 51979001), and the National Key Basic Research Development Plan of China (Grant No. 2014CB047006). Thanks to Professor Enlong Liu for the discussion and experimental data. Thanks to Professor Xuewen Xia for providing the source code of the MAPSO algorithm. Thanks to Professor Erxiang Song and Xu Li for their valuable advice. Thanks to Dr. Shun Wang, Jian Han and Wenjie Cui for the excellent correction and polishing to this manuscript.

Funding

National Key R&D Program of China (Grant No. 2018YFE0207100), Innovative Research Group Project of the National Natural Science Foundation of China (Grant No. 51979001), National Basic Research Program of China (973 Program) (Grant No. 2014CB047006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuyu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Chen, Z. Calibrating and validating a soil constitutive model through conventional triaxial tests: an in-depth study on CSUH model. Acta Geotech. 17, 3407–3420 (2022). https://doi.org/10.1007/s11440-021-01432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01432-1

Keywords

Navigation