Skip to main content
Log in

Effects of the micro-structure and micro-parameters on the mechanical behaviour of transversely isotropic rock in Brazilian tests

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Based on the Brazilian test results of 23 kinds of transversely isotropic rocks, five trends are obtained for the variation of normalized failure strength (NFS) as a function of the weak plane-loading angles. For each angle, three kinds of fracture patterns are obtained. Furthermore, a new numerical approach based on the particle discrete element method is put forward to systematically investigate the influence of the micro-structure of rock matrix and strength of weak plane on NFS and fracture patterns. The results reveal that the trend of NFS and fracture patterns are slightly influenced by coordination number of rock particles and tensile strength of weak plane, but greatly influenced by percentage of pre-existing cracks and shear strength of weak plane. Micro-parameters of the numerical approach are calibrated to reproduce behaviours of transversely isotropic rocks with different trends, and the simulation results are well matched with experimental results in terms of NFS and fracture patterns. Finally, the numerical approach is applied to study the failure process of layered surrounding rock after tunnel excavation. The simulation results also agree well with observation results of engineering projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Amadei B (1996) Importance of anisotropy when estimating and measuring in situ stresses in rock. Int J Rock Mech Min Sci Geomech Abstr 33:293–325

    Article  Google Scholar 

  2. Bahaaddinia M, Sharrocka G, Hebblewhitea BK (2013) Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression. Comput Geotech 49:206–255

    Article  Google Scholar 

  3. Bahaaddinia M, Sharrocka G, Hebblewhitea BK (2013) Numerical direct shear tests to model the shear behaviour of rock joints. Comput Geotech 51:101–115

    Article  Google Scholar 

  4. Barla G, Innaurato N (1973) Indirect tensile testing of anisotropic rocks. Rock Mech 5:215–230

    Article  Google Scholar 

  5. Bennett KC, Berla LA, Nix WD, Borja RI (2015) Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotech 10:1–14

    Article  Google Scholar 

  6. Blümling P, Bernier F, Lebon P, Martin CD (2007) The excavation damaged zone in clay formations time-dependent behavior and influence on performance assessment. Phys Chem Earth 32:588–599

    Article  Google Scholar 

  7. Brown ET, Green SJ, Sinha KP (1981) The influence of rock anisotropy on hole deviation in rotary drilling—a review. Int J Rock Mech Min Sci Geomech Abstr 18:387–401

    Article  Google Scholar 

  8. Chen CS, Pan E, Amadei B (1998) Determination of deformability and tensile strength of anisotropic rock using Brazilian tests. Int J Rock Mech Min Sci 35:43–61

    Article  Google Scholar 

  9. Cho JW, Kim H, Jeon SK, Min KB (2012) Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. Int J Rock Mech Min Sci 50:158–169

    Article  Google Scholar 

  10. Chong ZH, Li XH, Hou P et al (2017) Numerical investigation of bedding plane parameters of transversely isotropic shale. Rock Mech Rock Eng 50:1183–1204

    Article  Google Scholar 

  11. Dan DQ (2011) Brazilian test on anisotropic rocks- laboratory experiment, numerical simulation and interpretation. Dissertation, Freiberg University of Technology

  12. Debecker B (2009) Influence of planar heterogeneities on the fracture behavior of rock. Dissertation, University of Leuven

  13. Duan K, Kwok CY (2015) Discrete element modeling of anisotropic rock under Brazilian test conditions. Int J Rock Mech Min Sci 78:45–56

    Google Scholar 

  14. Everitt RA, Lajtai EZ (2004) The influence of rock fabric on excavation damage in the Lac du Bonnett granite. Int J Rock Mech Min Sci 41:1277–1303

    Article  Google Scholar 

  15. Fortsakis P, Nikas K, Marinos V, Marinos P (2012) Anisotropic behaviour of stratified rock masses in tunnelling. Eng Geol 141:74–83

    Article  Google Scholar 

  16. Gholamreza K, Behruz R, Yasin A (2015) An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones. Rock Mech Rock Eng 48:843–852

    Article  Google Scholar 

  17. Gong QM, Zhao J, Jiao YY (2005) Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunn Undergr Space Technol 20:183–191

    Article  Google Scholar 

  18. Hakala M, Kuula H, Hudson JA (2007) Rock properties for in situ stress measurement data reduction: a case study of the Olkiluoto mica gneiss, Finland. Int J Rock Mech Min Sci 44:14–46

    Article  Google Scholar 

  19. Hornby BE, Schwartz LM, Hudson JA (1994) Anisotropic effective-medium modelling of the elastic properties of shales. Geophysics 59:1570–1583

    Article  Google Scholar 

  20. Hou P, Gao F, Yang YG, Zhang ZZ, Zhang XX (2016) Effect of layer orientation on the failure of block shale under Brazilian splitting test and energy analysis. Chin J Geotech Eng 38:930–937 (in Chinese)

    Google Scholar 

  21. Indraratna B, Ngo NT, Rujikiatkamjorn C, Sloan SW (2015) Coupled discrete element–finite difference method for analysing the load-deformation behaviour of a single stone column in soft soil. Comput Geotech 63:267–278

    Article  Google Scholar 

  22. Itasca Consulting Group (2008) Particle flow code in 2 dimensions user’s guide. Itasca Consulting Group Inc, Minneapolis, USA

  23. Kim H, Cho JW, Song I, Min KB (2012) Anisotropy of elastic moduli, P-wave velocities, and thermal conductivities of Asan gneiss, Boryeong shale, and Yeoncheon schist in Korea. Eng Geol 148:68–77

    Article  Google Scholar 

  24. Kim KY, Zhuang L, Yang H et al (2016) Strength anisotropy of Berea sandstone: results of X-Ray computed tomography, compression tests, and discrete modeling. Rock Mech Rock Eng 49:1201–1210

    Article  Google Scholar 

  25. Li DY, Wong LNY (2013) The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng 46:269–287

    Article  Google Scholar 

  26. Li LC, Meng QM, Wang SY et al (2013) A numerical investigation of the hydraulic fracturing behaviour of conglomerate in Glutenite formation. Acta Geotech 8:597–618

    Article  Google Scholar 

  27. Lisjak A, Grasselli G, Vietor T (2014) Continuum–discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales. Int J Rock Mech Min Sci 65:96–115

    Google Scholar 

  28. Liu YS (2013) Brazilian splitting test theory and engineering application for transversely isotropic rock. Dissertation, Central South University (in Chinese)

  29. Liu F, Gordon PA, Valiveti DM (2017) Modeling competing hydraulic fracture propagation with the extended finite element method. Acta Geotech, pp 1–23. https://doi.org/10.1007/s11440-017-0569-6

  30. Marschall P, Distinguin M, Shao H, Bossart P, Enachescu C, Trick T (2006) Creation and evolution of damage zones around a microtunnel in a claystone formation of the Swiss Jura Mountains. In: Proceedings of the international symposium and exhibition on formation damage control, Lafayette, pp 95–110

  31. Park B, Min KB (2015) Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock. Int J Rock Mech Min Sci 76:243–255

    Google Scholar 

  32. Potyondy DO (2012) PFC 2D flat joint contact model. Itasca Consulting Group Inc, Minneapolis

    Google Scholar 

  33. Potyondy DO (2015) The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions. Geosyst Eng 18:1–28

    Article  Google Scholar 

  34. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364

    Article  Google Scholar 

  35. Roy DG, Singh TN (2016) Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under Brazilian test condition. Rock Mech Rock Eng 49:1–15

    Article  Google Scholar 

  36. Sanio HP (1985) Prediction of the performance of disc cutters in anisotropic rock. Int J Rock Mech Min Sci Geomech Abstr 22:153–161

    Article  Google Scholar 

  37. Semnani SJ, Borja RI (2017) Quantifying the heterogeneity of shale through statistical combination of imaging across scales. Acta Geotech 12:1193–1205

    Article  Google Scholar 

  38. Semnani SJ, White JA, Borja RI (2016) Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity. Int J Numer Anal Methods Geomech 40:2423–2449

    Article  Google Scholar 

  39. Tan X, Heinz K, Thomas F, Dan DQ (2015) Brazilian tests on isotropic transversely isotropic rocks: laboratory testing and numerical simulations. Rock Mech Rock Eng 48:1341–1351

    Article  Google Scholar 

  40. Tavallali A, Vervoort A (2010) Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions. Int J Rock Mech Min Sci 47:313–322

    Article  Google Scholar 

  41. Tjioe M, Borja RI (2015) On the pore-scale mechanisms leading to brittle and ductile deformation behavior of crystalline rocks. Int J Numer Anal Methods Geomech 39:1165–1187

    Article  Google Scholar 

  42. Tjioe M, Borja RI (2016) Pore-scale modeling of deformation and shear band bifurcation in porous crystalline rocks. Int J Numer Methods Eng 108:183–212

    Article  MathSciNet  Google Scholar 

  43. Vervoort A, Min KB, Konietzky H et al (2014) Failure of transversely isotropic rock under Brazilian test conditions. Int J Rock Mech Min Sci 70:343–352

    Google Scholar 

  44. Wang PT, Cai MF, Ren FH (2018) Anisotropy and directionality of tensile behaviours of a jointed rock mass subjected to numerical Brazilian tests. Tunn Undergr Space Technol 73:139–153

    Article  Google Scholar 

  45. Wu SC, Xu XL (2016) A study of three intrinsic problems of the classic discrete element method using flat-joint model. Rock Mech Rock Eng 49:1813–1830

    Article  Google Scholar 

  46. Xu GW (2017) Stability analysis of tunnels in layered phyllite stratum. Dissertation, Southwest Jiaotong University (in Chinese)

  47. Eshiet KII, Sheng Y (2016) The role of rock joint frictional strength in the containment of fracture propagation. Acta Geotech 12:897–920

    Article  Google Scholar 

  48. Yang ZP, He B, Xie LZ, Li CB, Wang J (2015) Strength and failure modes of shale based on Brazilian test. Rock Soil Mech 36:3447–3464 (in Chinese)

    Google Scholar 

  49. Yang XX, Kulatilakeb PHSW, Jing HW, Yang SQ (2015) Numerical simulation of a jointed rock block mechanical behavior adjacent to an underground excavation and comparison with physical model test results. Tunn Undergr Space Technol 50:129–142

    Article  Google Scholar 

  50. Zhang Q (2013) Modification of generalized 3D Hoke-Brown rock masses strength criterion and its parameters multi-scale studies. Tongji University, Shanghai

    Google Scholar 

  51. Zhang F, Dontsov E, Mack M (2017) Fully coupled simulation of a hydraulic fracture interacting with natural fractures with a hybrid discrete-continuum method. Int J Numer Anal Methods Geomech 41:1430–1452

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National key research and development program of China (Grant No. 2016YFC0802201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowen Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., He, C., Chen, Z. et al. Effects of the micro-structure and micro-parameters on the mechanical behaviour of transversely isotropic rock in Brazilian tests. Acta Geotech. 13, 887–910 (2018). https://doi.org/10.1007/s11440-018-0636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0636-7

Keywords

Navigation