Skip to main content
Log in

SPH approach for simulating hydro-mechanical processes with large deformations and variable permeabilities

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A simulation framework based on Smoothed Particle Hydrodynamics (SPH) is introduced to model problems involving the interaction between flowing water and soil deformation. Changes in soil porosity and associated permeability are automatically adjusted within this framework. The framework’s capabilities are presented and discussed for three geotechnical problems caused by flowing water. The comparison between simulation results and experiments shows that SPH with the proposed concept is capable of quantitatively simulating the hydro-mechanical processes beyond limit state with satisfactory agreement. To improve the computational stability, a correction procedure and a new algorithm for the selection of the optimal time step are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://korzani.wixsite.com/persiansph.

References

  1. Alcrudo F, Mulet J (2007) Description of the Tous Dam break case study (Spain). J Hydraul Res 45(sup1):45–57

    Article  Google Scholar 

  2. Aulbach B, Ziegler M, Schüttrumpf H (2013) Design aid for the verification of resistance to failure by hydraulic heave. Proc Eng 57:113–119

    Article  Google Scholar 

  3. Bui HH (2007) Lagrangian mesh-free particle method (SPH) for large deformation and post-failure of geomaterial using elasto-plastic constitutive models. Ph.D. thesis, Ritsumeikan University

  4. Bui HH, Fukagawa R (2013) An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: case of hydrostatic pore-water pressure. Int J Numer Anal Methods Geomech 37(1):31–50

    Article  Google Scholar 

  5. Bui HH, Sako K, Fukagawa R (2007) Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method. J Terramech 44(5):339–346 (ISSN 0022-4898)

    Article  Google Scholar 

  6. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int J Numer Anal Methods Geomech 32(12):1537–1570. https://doi.org/10.1002/nag.688 (ISSN 03639061 10969853)

    Article  MATH  Google Scholar 

  7. Chen W-F, Mizuno E (1990) Nonlinear analysis in soil mechanics. Elsevier, Amsterdam (ISBN 0444430431)

    Google Scholar 

  8. Dehnen W, Aly H (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc Lett 425(2):1068–1082 (ISSN 0035-8711)

    Article  Google Scholar 

  9. Den Adel H (1986) Analysis of permeability measurements using forchheimers equation. Technical report, TU Delft

  10. Di Y, Sato T (2003) Liquefaction analysis of saturated soils taking into account variation in porosity and permeability with large deformation. Comput Geotech 30(7):623–635. https://doi.org/10.1016/S0266-352X(03)00060-0 (ISSN 0266-352X)

    Article  Google Scholar 

  11. Fell R, Wan CF, Cyganiewicz J, Foster M (2003) Time for development of internal erosion and piping in embankment dams. J Geotech Geoenviron Eng 129(4):307–314

    Article  Google Scholar 

  12. Gholami Korzani M, Galindo-Torres SA, Williams D, Scheuermann A (2014) Numerical simulation of tank discharge using smoothed particle hydrodynamics. Appl Mech Mater 553:168–173. https://doi.org/10.4028/www.scientific.net/AMM.553.168 (ISSN 3038350680)

    Article  Google Scholar 

  13. Korzani M Gholami, Galindo Torres S, Scheuermann A, Williams D J (2016) Smoothed particle hydrodynamics into the fluid dynamics of classical problems. Appl Mech Mater 846:73–78 (ISSN 3038355283)

    Article  Google Scholar 

  14. Korzani M. Gholami, Galindo Torres S, Scheuermann A, Williams DJ (2017) Smoothed particle hydrodynamics for investigating hydraulic and mechanical behaviour of an embankment under action of flooding and overburden loads. Comput Geotech. https://doi.org/10.1016/j.compgeo.2017.08.014

    Google Scholar 

  15. Korzani M Gholami, Galindo-Torres S A, Scheuermann A, Williams D J (2017) Parametric study on smoothed particle hydrodynamics for accurate determination of drag coefficient for a circular cylinder. Water Sci Eng 10(2):143–153. https://doi.org/10.1016/j.wse.2017.06.001 (ISSN 1674-2370)

    Article  Google Scholar 

  16. Grabe J, Stefanova B (2014) Numerical modeling of saturated soils, based on smoothed particle hydrodynamics (SPH). Geotechnik 37(3):191–197. https://doi.org/10.1002/gete.201300024 (ISSN 01726145)

    Article  Google Scholar 

  17. Gray J, Monaghan J, Swift R (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49):6641–6662 (ISSN 0045-7825)

    Article  MATH  Google Scholar 

  18. HTG (2015) Recommendations of the committee for waterfront structures harbours and waterways: EAU 2012. Wilhelm Ernst & Sohn, Berlin

    Google Scholar 

  19. Lobovsky JKL (2007) Smoothed particle hydrodynamics modelling of fluids and solids. Appl Comput Mech 1:10

    Google Scholar 

  20. Larese A, Rossi R, Oñate E, Toledo MÁ, Morán R, Campos H (2013) Numerical and experimental study of overtopping and failure of rockfill dams. Int J Geomech 15(4):04014060 (ISSN 1532-3641)

    Article  Google Scholar 

  21. Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin. ISBN 3540222561

    MATH  Google Scholar 

  22. Liu D, Pang L, Xie B (2009) Typhoon disaster in china: prediction, prevention, and mitigation. Nat Hazards 49(3):421–436

    Article  Google Scholar 

  23. Liu GR, Liu MB (2005) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore. https://doi.org/10.1142/5340

    MATH  Google Scholar 

  24. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024 (ISSN 0004-6256)

    Article  Google Scholar 

  25. Lyngfelt A, Leckner B, Mattisson T (2001) A fluidized-bed combustion process with inherent \(\text{ CO }_{2}\) separation; application of chemical-looping combustion. Chem Eng Sci 56(10):3101–3113

    Article  Google Scholar 

  26. MacDonald TC, Langridge-Monopolis J (1984) Breaching charateristics of dam failures. J Hydraul Eng 110(5):567–586

    Article  Google Scholar 

  27. Mercier F, Bonelli S, Golay F, Anselmet F, Philippe P, Borghi R (2015) Numerical modelling of concentrated leak erosion during hole erosion tests. Acta Geotech 10(3):319–332. https://doi.org/10.1007/s11440-014-0349-5 (ISSN 1861-1133)

    Article  Google Scholar 

  28. Monaghan J (2006) Smoothed particle hydrodynamic simulations of shear flow. Mon Not R Astron Soc 365(1):199–213 (ISSN 1365-2966)

    Article  Google Scholar 

  29. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574 (ISSN 0066-4146)

    Article  Google Scholar 

  30. Monaghan JJ (1994) Simulating free surface flows with sph. Journal of computational physics 110(2):399–406 (ISSN 0021-9991)

    Article  MATH  Google Scholar 

  31. Monaghan JJ, Pongracic H (1985) Artificial viscosity for particle methods. Appl Numer Math 1(3):187–194

    Article  MATH  Google Scholar 

  32. Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226 (ISSN 0021-9991)

    Article  MATH  Google Scholar 

  33. Mukhlisin M, Taha MR, Kosugi K (2008) Numerical analysis of effective soil porosity and soil thickness effects on slope stability at a hillslope of weathered granitic soil formation. Geosci J 12(4):401–410. https://doi.org/10.1007/s12303-008-0039-0

    Article  Google Scholar 

  34. Nazem M, Sheng D, Carter JP, Sloan SW (2008) Arbitrary lagrangianeulerian method for large-strain consolidation problems. Int J Numer Anal Methods Geomech 32(9):1023–1050. https://doi.org/10.1002/nag.657 (ISSN 1096-9853)

    Article  MATH  Google Scholar 

  35. Peng C, Guo X, Wu W, Wang Y (2016) Unified modelling of granular media with smoothed particle hydrodynamics. Acta Geotechnica 11(6):1231–1247. https://doi.org/10.1007/s11440-016-0496-y (ISSN 1861-1133)

    Article  Google Scholar 

  36. Sabetamal H, Nazem M, Carter J, Sloan S (2014) Large deformation dynamic analysis of saturated porous media with applications to penetration problems. Comput Geotech 55:117–131. https://doi.org/10.1016/j.compgeo.2013.08.005 (ISSN 0266-352X)

    Article  Google Scholar 

  37. Serra-Llobet A, Tàbara JD, Sauri D (2013) The tous dam disaster of 1982 and the origins of integrated flood risk management in Spain. Nat Hazards 65(3):1981–1998

    Article  Google Scholar 

  38. Si Y (1998) The worlds most catastrophic dam failures. Qing (1998a), pp 25–38

  39. Toledo M (1998) Safety of rockfill dams subject to overtopping. In: Berga L (ed) International symposium on new trends and guidelines on dam safety. Taylor & Francis, London

    Google Scholar 

  40. Tsai T-L, Jang W-S (2014) Deformation effects of porosity variation on soil consolidation caused by groundwater table decline. Environ Earth Sci 72(3):829–838. https://doi.org/10.1007/s12665-013-3006-7 (ISSN 1866-6299)

    Article  Google Scholar 

  41. Van Gent MRA (1993) Stationary and oscillatory flow through coarse porous media. Technical report, TU Delft

  42. Violeau D, Leroy A (2014) On the maximum time step in weakly compressible SPH. J Comput Phys 256:388–415. https://doi.org/10.1016/j.jcp.2013.09.001 (ISSN 0021-9991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wagner N, Schwing M, Scheuermann A (2014) Numerical 3-D FEM and experimental analysis of the open-ended coaxial line technique for microwave dielectric spectroscopy on soil. IEEE Trans Geosci Remote Sens 52(2):880–893. https://doi.org/10.1109/TGRS.2013.2245138 (ISSN 0196-2892)

    Article  Google Scholar 

  44. Wan CF, Fell R (2004) Investigation of rate of erosion of soils in embankment dams. J Geotech Geoenviron Eng 130(4):373–380

    Article  Google Scholar 

  45. Wan CF, Fell R (2004) Laboratory tests on the rate of piping erosion of soils in embankment dams. Geotech Test J 27(3):1–9

    Google Scholar 

  46. Wan CF, Fell R (2004) Experimental investigation of internal instability of soils in embankment dams and their foundations. University of New South Wales, School of Civil and Environmental Engineering, Sydney

    Google Scholar 

  47. Wang H (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton

    Google Scholar 

  48. Wang H, Xu W (2013) Relationship between permeability and strain of sandstone during the process of deformation and failure. Geotech Geol Eng 31(1):347–353. https://doi.org/10.1007/s10706-012-9588-0 (ISSN 1573-1529)

    Article  MathSciNet  Google Scholar 

  49. Wudtke R-B (2008) Failure mechanisms of hydraulic heave at excavations. In: 19th European young geotechnical engineers conference, Gyor, Hungary

  50. Xu Y, Zhang L (2009) Breaching parameters for earth and rockfill dams. J Geotech Geoenviron Eng 135(12):1957–1970

    Article  Google Scholar 

  51. Yang X, Liu M, Peng S (2014) Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Comput Fluids 92:199–208. https://doi.org/10.1016/j.compfluid.2014.01.002 (ISSN 0045-7930)

    Article  MathSciNet  Google Scholar 

  52. Zhang W, Maeda K, Saito H, Li Z, Huang Y (2016) Numerical analysis on seepage failures of dike due to water level-up and rainfall using a water–soil-coupled smoothed particle hydrodynamics model. Acta Geotech 11(6):1401–1418. https://doi.org/10.1007/s11440-016-0488-y (ISSN 1861-1133)

    Article  Google Scholar 

Download references

Acknowledgements

The presented research is funded by the Australian Research Council Discovery Project, Hydraulic Erosion of Granular Structures: Experiments and Computational Simulations (DP120102188). The authors would like to thank Tilman Binttner for providing us his experimental results for the fluidized bed test. The second author would like to acknowledge the support from the Advance Queensland Fellowship programme (Grant number AQ-15188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gholami Korzani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami Korzani, M., Galindo-Torres, S.A., Scheuermann, A. et al. SPH approach for simulating hydro-mechanical processes with large deformations and variable permeabilities. Acta Geotech. 13, 303–316 (2018). https://doi.org/10.1007/s11440-017-0610-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0610-9

Keywords

Navigation