Skip to main content
Log in

A modified normalized model for predicting effective soil thermal conductivity

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Effective soil thermal conductivity (λ eff) describes the ability of a multiphase soil to transmit heat by conduction under unit temperature gradient. It is a critical parameter for environmental science, earth and planetary science, and engineering applications. Numerous models are available in the literature, but their applicability is generally restricted to certain soil types or water contents (θ). The objective of this study was to develop a new model in the similar form of the Johansen 1975 model to simulate the λ eff(θ) relationship of soils of various soil textures and water contents. An exponential type model with two parameters is developed and a new function for calculating dry soil thermal conductivity is presented. Performance of the new model and six other normalized models were evaluated with published datasets. The results show that the new model is able to well mimic λ eff(θ) relationship of soils from sand to silt loam and from oven dry to full saturation. In addition, it has the best performance among the seven models under test (with root-mean-square error of 0.059 W m−1 °C−1, average deviations of 0.0009 W m−1 °C−1, and Nash–Sutcliffe efficiency of 0.994). The new model has potential to improve the reliability of soil thermal conductivity estimation and be incorporated into numerical modeling for environmental, earth and engineering studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balland V, Arp PA (2005) Modeling soil thermal conductivities over a wide range of conditions. J Environ Eng Sci 4(6):549–558. doi:10.1139/S05-007

    Article  Google Scholar 

  2. Barry-Macaulay D, Bouazza A, Wang B, Singh RM (2015) Evaluation of soil thermal conductivity models. Can Geotech J 52(11):1892–1900. doi:10.1139/cgj-2014-0518

    Article  Google Scholar 

  3. Batjes NH (1996) Development of a world data set of soil water retention properties using pedotransfer rules. Geoderma 71(1–2):31–52. doi:10.1016/0016-7061(95)00089-5

    Article  Google Scholar 

  4. Becker BR, Misra A, Fricke BA (1992) Development of correlations for soil thermal conductivity. Int Commun Heat Mass Transf 19(1):59–68. doi:10.1016/0735-1933(92)90064-O

    Article  Google Scholar 

  5. Bristow KL, Horton R, Kluitenberg GJ (1994) Measurement of soil thermal properties with a dual-probe heat-pulse technique. Soil Sci Soc Am J 58(5):1288–1294. doi:10.2136/sssaj1994.03615995005800050002x

    Article  Google Scholar 

  6. Brutsaert W (1982) Evaporation into the atmosphere: theory, history and applications, vol 1. Springer, Berlin

    Book  Google Scholar 

  7. Campbell GS (1985) Soil physics with BASIC: transport models for soil–plant systems. Developments in soil science, vol 14, 3rd edn. Elsevier, New York

    Google Scholar 

  8. Campbell GS, Calissendorff C, Williams JH (1991) Probe for measuring soil specific heat using a heat-pulse method. Soil Sci Soc Am J 55(1):291–293. doi:10.2136/sssaj1991.03615995005500010052x

    Article  Google Scholar 

  9. Chen SX (2008) Thermal conductivity of sands. Heat Mass Transf 44(10):1241–1246. doi:10.1007/s00231-007-0357-1

    Article  Google Scholar 

  10. Côté J, Konrad J-M (2005) A generalized thermal conductivity model for soils and construction materials. Can Geotech J 42(2):443–458. doi:10.1139/t04-106

    Article  Google Scholar 

  11. de Vries DA (1963) Thermal properties of soil. In: van Dijk WR (ed) Physics of plant environment. North Holland Publishing, Amsterdam, pp 210–235

    Google Scholar 

  12. Dong Y, Pamukcu S (2015) Thermal and electrical conduction in unsaturated sand controlled by surface wettability. Acta Geotech 10(6):821–829. doi:10.1007/s11440-014-0317-0

    Article  Google Scholar 

  13. Dong Y, McCartney J, Lu N (2015) Critical review of thermal conductivity models for unsaturated soils. Geotech Geol Eng 33(2):207–221. doi:10.1007/s10706-015-9843-2

    Article  Google Scholar 

  14. Ewen J, Thomas HR (1987) The thermal probe—a new method and its use on an unsaturated sand. Géotechnique 37(1):91–105. doi:10.1680/geot.1987.37.1.91

    Article  Google Scholar 

  15. Farouki OT (1981) Thermal properties of soils, vol 81-1. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover

    Book  Google Scholar 

  16. Farouki OT (1982) Evaluation of methods for calculating soil thermal conductivity. DTIC Document

  17. Haigh SK (2012) Thermal conductivity of sands. Géotechnique 62(7):617–625. doi:10.1680/geot.11.P.043

    Article  Google Scholar 

  18. He H, Dyck M (2013) Application of multiphase dielectric mixing models for understanding the effective dielectric permittivity of frozen soils. Vadose Zone J. doi:10.2136/vzj2012.0060

    Google Scholar 

  19. He H, Dyck M, Wang J, Lv J (2015) Evaluation of TDR for quantifying heat-pulse-method-induced ice melting in frozen soils. Soil Sci Soc Am J 79(5):1275–1288. doi:10.2136/sssaj2014.12.0499

    Article  Google Scholar 

  20. Johansen O (1975) Varmeledningsevne av jordarter (Thermal conductivity of soils). University of Trondheim, Trondheim. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, N.H. CRREL Draft English Translation 637

  21. Johansen O (1977) Thermal conductivity of soils. Cold Regions Research and Engineering Laboratory, US Army Corps of Engineers, Hanover

    Book  Google Scholar 

  22. Kersten MS (1949) Thermal properties of soils. Minnesota University Engineering Experiment Station, Bulletin No. 28, Minnesota University Institute of Technology, Minneapolis

    Google Scholar 

  23. Khader MS, Crane RA, Vachon RI (1980) Thermal conductivity of granular materials: a review. In: Rezk AMA (ed) Heat and fluid flow in power system components. Pergamon Press, Oxford, pp 111–141. doi:10.1016/B978-0-08-024235-4.50014-1

    Google Scholar 

  24. Li D, Sun X, Khaleel M (2012) Comparison of different upscaling methods for predicting thermal conductivity of complex heterogeneous materials system: application on nuclear waste forms. Metall Mater Trans A 44(S1):61–69. doi:10.1007/s11661-012-1269-3

    Article  Google Scholar 

  25. Lu N, Dong Y (2015) Closed-form equation for thermal conductivity of unsaturated soils at room temperature. J Geotech Geoenviron Eng 141(6):04015016. doi:10.1061/(ASCE)GT.1943-5606.0001295

    Article  Google Scholar 

  26. Lu S, Ren T, Gong Y, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J 71(1):8–14. doi:10.2136/sssaj2006.0041

    Article  Google Scholar 

  27. Lu Y, Lu S, Horton R, Ren T (2014) An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density. Soil Sci Soc Am J 78(6):1859–1868. doi:10.2136/sssaj2014.05.0218

    Article  Google Scholar 

  28. McInnes KJ (1981) Thermal conductivities of soils from dryland wheat regions of Eastern Washington. Washington State University, Pullman

    Google Scholar 

  29. Nikolaev I, Leong W, Rosen M (2013) Experimental investigation of soil thermal conductivity over a wide temperature range. Int J Thermophys 34(6):1110–1129. doi:10.1007/s10765-013-1456-5

    Article  Google Scholar 

  30. Nikoosokhan S, Nowamooz H, Chazallon C (2015) Effect of dry density, soil texture and time–spatial variable water content on the soil thermal conductivity. Geomech Geoeng 11(2):149–158. doi:10.1080/17486025.2015.1048313

    Article  Google Scholar 

  31. Noborio K (2001) Measurement of soil water content and electrical conductivity by time domain reflectometry: a review. Comput Electron Agric 31(3):213–237. doi:10.1016/S0168-1699(00)00184-8

    Article  Google Scholar 

  32. Ochsner TE, Horton R, Ren T (2001) A new perspective on soil thermal properties. Soil Sci Soc Am J 65(6):1641–1647. doi:10.2136/sssaj2001.1641

    Article  Google Scholar 

  33. Pachepsky YA, Genuchten MTV (2011) Pedotransfer functions

  34. Pachepsky YA, Rawls WJ, Timlin DJ (2013) The current status of pedotransfer functions: their accuracy, reliability, and utility in field- and regional-scale modeling. In: Corwin DL, Loague K, Ellsworth TR (eds) Assessment of non-point source pollution in the vadose zone. American Geophysical Union, Washington, pp 223–234. doi:10.1029/GM108p0223

  35. Peters-Lidard CD, Blackburn E, Liang X, Wood EF (1998) The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J Atmos Sci 55(7):1209–1224. doi:10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2

    Article  Google Scholar 

  36. Pietrak K, Wisniewski TS (2015) A review of models for effective thermal conductivity of composite materials. J Power Technol 95(1):14

    Google Scholar 

  37. Progelhof RC, Throne JL, Ruetsch RR (1976) Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16(9):615–625. doi:10.1002/pen.760160905

    Article  Google Scholar 

  38. Ren T, Ochsner TE, Horton R (2003) Development of thermo-time domain reflectometry for vadose zone measurements. Vadose Zone J 2(4):544–551. doi:10.2136/vzj2003.5440

    Article  Google Scholar 

  39. Robinson DA, Jones SB, Wraith JM, Or D, Friedman SP (2003) A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J 2(4):444–475. doi:10.2136/vzj2003.4440

    Article  Google Scholar 

  40. Saito T, Hamamoto S, Ei Mon E, Takemura T, Saito H, Komatsu T, Moldrup P (2014) Thermal properties of boring core samples from the Kanto area, Japan: development of predictive models for thermal conductivity and diffusivity. Soils Found 54(2):116–125. doi:10.1016/j.sandf.2014.02.004

    Article  Google Scholar 

  41. Scheinost AC, Sinowski W, Auerswald K (1997) Regionalization of soil water retention curves in a highly variable soilscape, I. Developing a new pedotransfer function. Geoderma 78(3–4):129–143. doi:10.1016/S0016-7061(97)00046-3

    Article  Google Scholar 

  42. Schneider M, Goss KU (2012) Prediction of water retention curves for dry soils from an established pedotransfer function: evaluation of the Webb model. Water Resour Res. doi:10.1029/2011WR011049

    Google Scholar 

  43. Shein EV, Arkhangel’Skaya TA (2006) Pedotransfer functions: state of the art, problems, and outlooks. Eurasian Soil Sci 39(10):1089–1099

    Article  Google Scholar 

  44. Smith WO (1942) The thermal conductivity of dry soil. Soil Sci 53(6):435–460

    Article  Google Scholar 

  45. Smith WO, Byers HG (1938) The thermal conductivity of dry soils of certain of the great soil groups. Soil Sci Soc Am Proc 3:13–19

    Article  Google Scholar 

  46. Tarnawski VR, Leong WH (2016) Advanced geometric mean model for predicting thermal conductivity of unsaturated soils. Int J Thermophys 37(2):1–42. doi:10.1007/s10765-015-2024-y

    Article  Google Scholar 

  47. Tarnawski VR, Wagner B (1992) A new computerized approach to estimating the thermal properties of unfrozen soils. Can Geotech J 29(4):714–720. doi:10.1139/t92-079

    Article  Google Scholar 

  48. Tarnawski VR, Leong WH, Gori F, Buchan GD, Sundberg J (2002) Inter-particle contact heat transfer in soil systems at moderate temperatures. Int J Energy Res 26(15):1345–1358. doi:10.1002/er.853

    Article  Google Scholar 

  49. Tarnawski V, Momose T, Leong WH, Bovesecchi G, Coppa P (2009) Thermal conductivity of standard sands. Part I. Dry-state conditions. Int J Thermophys 30(3):949–968. doi:10.1007/s10765-009-0596-0

    Article  Google Scholar 

  50. Tarnawski VR, Momose T, Leong WH (2011) Thermal conductivity of standard sands II. Saturated conditions. Int J Thermophys 32(5):984–1005. doi:10.1007/s10765-011-0975-1

    Article  Google Scholar 

  51. Tarnawski VR, McCombie ML, Leong WH, Wagner B, Momose T, Schönenberger J (2012) Canadian field soils II. Modeling of quartz occurrence. Int J Thermophys 33(5):843–863. doi:10.1007/s10765-012-1184-2

    Article  Google Scholar 

  52. Tarnawski VR, McCombie ML, Momose T, Sakaguchi I, Leong WH (2013) Thermal conductivity of standard sands. Part III. Full range of saturation. Int J Thermophys 34(6):1130–1147. doi:10.1007/s10765-013-1455-6

    Article  Google Scholar 

  53. Tarnawski VR, Momose T, McCombie ML, Leong WH (2015) Canadian field soils III. Thermal-conductivity data and modeling. Int J Thermophys 36(1):119–156. doi:10.1007/s10765-014-1793-z

    Article  Google Scholar 

  54. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. doi:10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  55. Wang S, Wang Q, Fan J, Wang W (2012) Soil thermal properties determination and prediction model comparison (in Chinese with English abstract). Trans Chin Soc Agric Eng 28(5):78–84

    Google Scholar 

  56. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113(1–4):223–243. doi:10.1016/S0168-1923(02)00109-0

    Article  Google Scholar 

  57. Woodside W, Messmer JH (1961) Thermal conductivity of porous media. I. Unconsolidated sands. J Appl Phys 32(9):1688–1699

    Article  Google Scholar 

  58. Wösten JHM, Pachepsky YA, Rawls WJ (2001) Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J Hydrol 251(3–4):123–150. doi:10.1016/S0022-1694(01)00464-4

    Article  Google Scholar 

  59. Yamazaki Y, Tsuchiya F, Tsuji O (2003) Measurement and estimation of thermal conductivity of quartz-containing frozen and unfrozen soils (in Japanese with English abstract). Trans Jpn Soc Irrig Drain Reclam Eng (Japan) 226(71-4):497–505

    Google Scholar 

  60. Zheng D, van der Velde R, Su Z, Wang X, Wen J, Booij MJ, Hoekstra AY, Chen Y (2015) Augmentations to the Noah model physics for application to the yellow river source area. Part II: turbulent heat fluxes and soil heat transport. J Hydrometeorol 16(6):2677–2694. doi:10.1175/JHM-D-14-0199.1

    Article  Google Scholar 

Download references

Acknowledgements

Datasets used in this study were digitalized from the published literature. Funding for this research was provided in part by the National Natural Science Foundation of China (NSFC Grant Nos. 41501231, 41371233, and 41371234), Natural Science Foundation of Shaanxi Province, China (Grant No. 2016JQ4008), the Northwest A&F University (the Fundamental Research Funds for the Central Universities-2452015178 and the Doctoral Start-up Foundation-2452015287), the State Key Laboratory of Frozen Soil Engineering (Open Fund No. SKLFSE201503), and the Natural Science and Engineering Research Council of Canada (NSERC discovery Grants to Dr. Miles Dyck and Dr. Bingcheng Si).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailong He, Jialong Lv or Jinxin Wang.

Appendix

Appendix

See Tables 3, 4 and 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Zhao, Y., Dyck, M.F. et al. A modified normalized model for predicting effective soil thermal conductivity. Acta Geotech. 12, 1281–1300 (2017). https://doi.org/10.1007/s11440-017-0563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0563-z

Keywords

Navigation