Skip to main content
Log in

DEM assessment of impact forces of dry granular masses on rigid barriers

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In the design of sheltering structures/embankments for the mitigation of the risk due to rapid and long spreading landslides, a crucial role is generally played by the assessment of the impact force exerted by the flowing mass on the artificial obstacle. This paper is focused on this issue and in particular on the evaluation of the maximum impact force on the basis of the results obtained by performing an extensive numerical campaign by means of a 3D discrete element code, in which a dry granular mass is schematised as a random distribution of rigid spherical particles. The granular mass is generated just in front of the obstacle: its initial volume, velocity distribution, height, length and porosity are arbitrarily assigned, and the impact process is exclusively analysed. The initial conditions are varied to take a large variety of geometrical/mechanical factors, such as the initial front inclination, its height, the initial void ratio, the length of the impacting mass and the inter-particle friction angle, into consideration. A design formula is also proposed on the base of the obtained results and critically compared with the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Albaba A, Lambert S, Nicot F, Chareyre B (2015) Modeling the impact of granular flow against an obstacle. In: Recent advances in modeling landslides and debris flows, pp 95–105

  2. Arattano M, Franzi L (2003) On the evaluation of debris flows dynamics by means of mathematical models. Nat Hazards Earth Syst Sci 3(6):539–544

    Article  Google Scholar 

  3. Armanini A (1997) On the dynamic impact of debris flows. In: Recent developments on debris flows. Springer, Berlin, pp 208–226

  4. Calvetti F (2008) Discrete modelling of granular materials and geotechnical problems. Eur J Environ Civ Eng 12(7–8):951–965

    Article  Google Scholar 

  5. Calvetti F, Crosta G, Tatarella M (2000) Numerical simulation of dry granular flows: from the reproduction of small-scale experiments to the prediction of rock avalanches. Riv Ital Geotech 34(2):21–38

    Google Scholar 

  6. Calvetti F, di Prisco C, Nova R (2004) Experimental and numerical analysis of soil–pipe interaction. J Geotech Geoenviron Eng 130(12):1292–1299

    Article  Google Scholar 

  7. Chikatamarla R (2007) Optimisation of cushion materials for rockfall protection galleries. ETH Zürich, ETH-Diss. Nr. 16315

  8. Clancy LJ (1975) Aerodynamics. Pitman, London

    Google Scholar 

  9. Cui P, Zeng C, Lei Y (2015) Experimental analysis on the impact force of viscous debris flow. Earth Surf Process Landf 1644–1655

  10. Cundall PA, Hart RD (1992) Numerical modelling of discontinua. Eng Comput 9(2):101–113

    Article  Google Scholar 

  11. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  12. De Blasio FV (2011) Introduction to the physics of landslides. Springer, Berlin

    Book  Google Scholar 

  13. Dok L (2000) Review of natural terrain landslide debris-resting barrier design, Geotechnical Engineering Office. Geo Report No. 104. Civil Engineering Department: Government of the Hong Kong Special Administrative Region

  14. FEMA (2011) P-55: coastal construction manual, principles and practices of planning, siting, designing, constructing, and maintaining residential buildings in Coastal Areas, 4th edn, vol 2

  15. FEMA (2012) P-259: engineering principles and practices for retrofitting flood-prone residential structures, 3rd edn

  16. Gabrieli F, Cola S, Calvetti F (2009) Use of an up-scaled DEM model for analysing the behaviour of a shallow foundation on a model slope. Geomech Geoeng 4(2):109–122

    Article  Google Scholar 

  17. Hakuno M, Uchida Y (1991) Application of the distinct element method to the numerical analysis of debris flows. Struct Eng Earthq Eng Proc JSCE 75s–85s

  18. Hong Y, Wang JP, Li DQ, Cao ZJ, Cui P (2015) Statistical and probabilistic analyses of impact pressure and discharge of debris flow from 139 events during 1961 and 2000 at Jiangjia Ravine, China. Eng Geol 187:122–134

    Article  Google Scholar 

  19. Huang HP, Yang KC, Lai SW (2007) Impact force of debris flow on filter dam. In: Geophysical research abstracts, vol 9, p 03218. https://gra103.aca.ntu.edu.tw/gdoc/96/D91622005a.pdf. Accessed 2 May 2013

  20. Hübl J, Holzinger G (2003) Entwicklung von Grundlagen zur Dimensionierung kronenoffener Bauwerke für die Geschiebebewirtschaftung in Wildbächen: Kleinmaßstäbliche Modellversuche zur Wirkung von Murbrechern, WLS, Report 50 Band 3. Im Auftrag des BMLFUW VC 7a (unveröffentlicht). Wien: Institut für Alpine Naturgefahren, Universität für Bodenkultur

  21. Hübl J, Suda J, Proske D, Kaitna R, Scheidl C (2009) Debris flow impact estimation. In: 11th International symposium on water management and hydraulic engineering, vol 1, pp 137–148

  22. Hungr O, Morgan GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21(4):663–677

    Article  Google Scholar 

  23. Ishikawa N, Inoue R, Hayashi K, Hasegawa Y, Mizuyama T (2008) Experimental approach on measurement of impulsive fluid force using debris flow model. In: Conference proceedings interpraevent, vol 8. http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2008_1_343.pdf. Accessed 2 May 2013

  24. Jakob M, Hungr O (2005) Debris-flow hazards and related phenomena. Springer, Berlin

    Google Scholar 

  25. Jóhannesson T, Gauer P, Issler P Lied K (eds) (2009) The design of avalanche protection dams. In: Recent practical and theoretical developments. European Commission, Climate Change and Natural Hazard Research—Series 2 Project report, EUR 23339. doi: 10.2777/12871

  26. Kwan JSH (2012) Supplementary technical guidance on design of rigid Debris-resisting Barriers. GEO Technical Note No. TN 2/2012 (2012). GEO Report No. 270. The Government of the Hong Kong Special Administrative Region

  27. Li X, He S, Luo Y, Wu Y (2010) Discrete element modelling of debris avalanche impact on retaining walls. J Mt Sci 7(3):276–281

    Article  Google Scholar 

  28. Marrone S, Antuono M, Colagrossi A, Colicchio G, Le Touzé D, Graziani G (2011) δ-SPH model for simulating violent impact flows. Comput Methods Appl Mech Eng 200(13):1526–1542

    Article  MathSciNet  MATH  Google Scholar 

  29. Miyoshi I (1990) Experimental Study of impact load on a dam due to debris flow. In: Proceedings of the IUFRO Pacific Southwest Technical Session on Geomorphic Hazards in Managed Forests, USDA Forest Service Gen. Technical Report PSW-GTR-1301.9 91, Montreal, pp 48–55. http://www.fs.fed.us/psw/publications/documents/psw_gtr130/psw_gtr130.pdf. Accessed 2 May 2013

  30. Mizuyama T (1979) Estimation of impact force on dam due to debris flow and its problems. J Jpn Soc Eros Control Eng 112:40–43

    Google Scholar 

  31. Moriguchi S, Borja RI, Yashima A, Sawada K (2009) Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech 4(1):57–71

    Article  Google Scholar 

  32. Pouliquen O (1999) On the shape of granular fronts down rough inclined planes. Phys Fluids 11(7):1956–1958

    Article  MathSciNet  MATH  Google Scholar 

  33. Pouliquen O, Vallance JW (1999) Segregation induced instabilities of granular fronts. Chaos Interdiscip J Nonlinear Sci 9(3):621–630

    Article  MATH  Google Scholar 

  34. Prochaska AB, Santi PM, Higgins JD, Cannon SH (2008) A study of methods to estimate debris flow velocity. Landslides 5(4):431–444

    Article  Google Scholar 

  35. Proske D, Suda J, Hübl J (2011) Debris flow impact estimation for breakers. Georisk 5(2):143–155

    Google Scholar 

  36. Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19(1):47–77

    Article  Google Scholar 

  37. Salciarini D, Tamagnini C, Conversini P (2010) Discrete element modelling of debris-avalanche impact on earthfill barriers. Phys Chem Parts A/B/C 35(3):172–181

    Article  Google Scholar 

  38. Scheidl C, Chiari M, Kaitna R, Müllegger M, Krawtschuk A, Zimmermann T, Proske D (2013) Analysing debris-flow impact models, based on a small scale modelling approach. Surv Geophys 34(1):121–140

    Article  Google Scholar 

  39. Spang RM (1998) Rockfall barriers-design and practice in Europe. In: Proceedings of the seminar on planning, design and implementation of debris flow and rockfall hazards mitigation measures, pp 1–8

  40. Suda J, Strauss A, Rudolf-Miklau F, Hübl J (2009) Safety assessment of barrier structures. Struct Infrastruct Eng 5(4):311–324

    Article  Google Scholar 

  41. Suda J, Hübl J, Bergmeister K (2010) Design and construction of high stressed concrete structures as protection works for torrent control in the Austrian Alps. In: Proceedings of the 3rd international FIB congress, Washington, DC. http://www.dist.unina.it/proc/2010/FIB3/code/reports/EAD/517.pdf. Accessed 3 May 2013

  42. Takahashi T (2007) Debris flow: mechanics, prediction and countermeasures. Taylor & Francis, London

    Book  Google Scholar 

  43. Teufelsbauer H, Wang Y, Chiou MC, Wu W (2009) Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granul Matter 11(4):209–220

    Article  MATH  Google Scholar 

  44. Teufelsbauer H, Wang Y, Pudasaini SP, Borja RI, Wu W (2011) DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotech 6(3):119–133

    Article  Google Scholar 

  45. Vardoulakis I (2008) Lecture notes on geodynamics of landslides: III. Flow-slides. http://mechan.ntua.gr/teaching/lectnotes/laram/LARAM08III.pdf. Accessed 20 March 2013

  46. Watanabe M, Ikeya H (1981) Investigation and analysis of volcanic mud flows on Mount Sakurajima Japan. In: Erosion sediment transport measurement, pp 245–256

  47. Yoshida H (1999) Recent experimental studies on rockfall control in Japan. In: Masuya H, Labiouse V (eds) Proceedings of the joint Japan-Swiss Scientific Seminar on impact load by rock falls and design of protection structures, Kanazawa, Japan, pp 69–78

  48. Zhang SC (1993) A comprehensive approach to the observation and prevention of debris flows in China. Natl Hazards 7(1):1–23

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Italian government within the framework of PON01_01869 Project “Tecnologie e Materiali Innovativi per la Difesa del Territorio e la Tutela dell’ambiente” and of the PRIN 2011 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Calvetti.

Appendix

Appendix

To numerically asses the propagation wave velocity υ M within the soil mass, in case α = 90° and por = 0.45, the authors took into consideration the five instants of time t i indicated in Fig. 19a, analysed the corresponding snapshots relative to the force chains developed within the soil mass (in Fig. 19b, c those corresponding to t 1 and t 2 are reported, respectively) and calculated the \(\upsilon_{\text{M}}\) quantity as it follows:

$$\upsilon_{\text{M}} = \frac{{\Delta _{\text{w}} \ell }}{{\Delta _{\text{w}} t}}$$

where \(\Delta _{\text{w}} t\) is the difference between two time instants and \(\Delta _{\text{w}} \ell\) the length covered by the force wave in the considered time interval. By analysing different initial velocities, the authors obtained the same value for υ M since it obviously depends exclusively on the contact stiffness, the particle density and the initial porosity.

Fig. 19
figure 19

Assessment of the force wave velocity: a force versus time (α = 90°, \(\ell\) = 15 m), b force chains for the time instant 1 (b) and 2 (c)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvetti, F., di Prisco, C.G. & Vairaktaris, E. DEM assessment of impact forces of dry granular masses on rigid barriers. Acta Geotech. 12, 129–144 (2017). https://doi.org/10.1007/s11440-016-0434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0434-z

Keywords

Navigation