Skip to main content

Advertisement

Log in

Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Adding refinement and accuracy to constitutive models of soil results in the introduction of complexities along with more model parameters. These parameters (such as hardening-/softening-, dilatancy-/contractancy-related parameters and critical state parameters) are usually not easily obtained in a straightforward way. How to identify these key parameters and estimate their correlations of advanced soil models is a particular issue for geotechnical engineering. This paper was aimed to investigate multi-objective genetic algorithms for identifying parameters of advanced sand models based on standard laboratory tests, followed by the correlation analysis of parameters. A critical-state-based sand model has been developed to simulate three triaxial compression tests performed on loose and dense Hostun sand. Two widely used genetic algorithms with two initialisation methods are examined. The performance of the two genetic algorithms is assessed by comparing their simulation performance using optimal parameters, the convergence speed and the distribution of solutions on the Pareto front. The optimal parameters can then be classified into two factors by their correlation relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Calvello M, Finno RJ (2004) Selecting parameters to optimize in model calibration by inverse analysis. Comput Geotech 31(5):410–424

    Article  Google Scholar 

  2. Chang CS, Hicher PY (2005) An elasto-plastic model for granular materials with microstructural consideration. Int J Solids Struct 42(14):4258–4277

    Article  MATH  Google Scholar 

  3. Chang CS, Yin ZY (2010) Micromechanical modeling for inherent anisotropy in granular materials. J Eng Mech ASCE 136(7):830–839

    Article  Google Scholar 

  4. Clayton C (2011) Stiffness at small strain: research and practice. Geotechnique 61(1):5–37

    Article  Google Scholar 

  5. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182–197

    Article  Google Scholar 

  6. Duncan JM, Chang C-Y (1970) Nonlinear analysis of stress and strain in soils. J Soil Mech Found Div 96(5):1629–1653

    Google Scholar 

  7. Gajo A, Wood M (1999) Severn-Trent sand: a kinematic-hardening constitutive model: the q–p formulation. Geotechnique 49(5):595–614

    Article  Google Scholar 

  8. Ghaboussi J, Sidarta D (1998) New nested adaptive neural networks (NANN) for constitutive modeling. Comput Geotech 22(1):29–52

    Article  Google Scholar 

  9. Ghaboussi J, Garrett J Jr, Wu X (1991) Knowledge-based modeling of material behavior with neural networks. J Eng Mech 117(1):132–153

    Article  Google Scholar 

  10. H-b Z, Yin S (2009) Geomechanical parameters identification by particle swarm optimization and support vector machine. Appl Math Model 33(10):3997–4012

    Article  MATH  Google Scholar 

  11. Jefferies M (1993) Nor-Sand: a simle critical state model for sand. Geotechnique 43(1):91–103

    Article  MathSciNet  Google Scholar 

  12. John H (1992) Holland, adaptation in natural and artificial systems. MIT Press, Cambridge

    Google Scholar 

  13. Knabe T, Datcheva M, Lahmer T, Cotecchia F, Schanz T (2013) Identification of constitutive parameters of soil using an optimization strategy and statistical analysis. Comput Geotech 49:143–157

    Article  Google Scholar 

  14. Lecampion B, Constantinescu A, Nguyen Minh D (2002) Parameter identification for lined tunnels in a viscoplastic medium. Int J Numer Anal Methods Geomech 26(12):1191–1211

    Article  MATH  Google Scholar 

  15. Levasseur S, Malécot Y, Boulon M, Flavigny E (2008) Soil parameter identification using a genetic algorithm. Int J Numer Anal Methods Geomech 32(2):189–213

    Article  MATH  Google Scholar 

  16. Levasseur S, Malecot Y, Boulon M, Flavigny E (2009) Statistical inverse analysis based on genetic algorithm and principal component analysis: method and developments using synthetic data. Int J Numer Anal Methods Geomech 33(12):1485–1511

    Article  MATH  Google Scholar 

  17. Levasseur S, Malecot Y, Boulon M, Flavigny E (2010) Statistical inverse analysis based on genetic algorithm and principal component analysis: applications to excavation problems and pressuremeter tests. Int J Numer Anal Methods Geomech 34(5):471–491

    Article  MATH  Google Scholar 

  18. Li S, Liu Y (2005) Parameter identification approaches to fractal model of mass transport for unsaturated soils. Mod Phys Lett B 19(28n29):1727–1730

    Article  MATH  Google Scholar 

  19. Li S-J, Liu Y-X (2006) An improved approach to nonlinear dynamical system identification using PID neural networks. Int J Nonlinear Sci Numer Simul 7(2):177–182

    Article  Google Scholar 

  20. Li G, Liu Y, Dano C, Hicher P (2014) Grading-dependent behavior of granular materials: from discrete to continuous modeling. J Eng Mech. doi:10.1061/(ASCE)EM.1943-7889.0000866

    Google Scholar 

  21. Liu Y-J, Li G, Yin Z-Y, Dano C, Hicher P-Y, Xia X-H, Wang J-H (2014) Influence of grading on the undrained behavior of granular materials. Comptes Rendus Mécanique 342(2):85–95

    Article  Google Scholar 

  22. Mahbod M, Zand-Parsa S (2010) Prediction of soil hydraulic parameters by inverse method using genetic algorithm optimization under field conditions. Arch Agronomy Soil Sci 56(1):13–28

    Article  Google Scholar 

  23. McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    MathSciNet  MATH  Google Scholar 

  24. Meier J, Schaedler W, Borgatti L, Corsini A, Schanz T (2008) Inverse parameter identification technique using PSO algorithm applied to geotechnical modeling. J Artif Evol Appl 2008:1–14

    Article  Google Scholar 

  25. Obrzud RF, Vulliet L, Truty A (2009) Optimization framework for calibration of constitutive models enhanced by neural networks. Int J Numer Anal Methods Geomech 33(1):71–94

    Article  MATH  Google Scholar 

  26. Papon A, Riou Y, Hicher P, Dano C (2008) Identifying soil parameters by inverse analysis of field testing. In: Proceedings of earth and space conference, Long Beach, California

  27. Papon A, Riou Y, Dano C, Hicher PY (2012) Single-and multi-objective genetic algorithm optimization for identifying soil parameters. Int J Numer Anal Methods Geomech 36(5):597–618

    Article  Google Scholar 

  28. Poles S, Rigoni E, Robic T (2004) MOGA-II performance on noisy optimization problems. In: International conference on bioinspired optimization methods and their applications. BIOMA. Ljubljana, Slovena, Oct 2004

  29. Poloni C, Pediroda V (1997) GA coupled with computationally expensive simulations: tools to improve efficiency. In: Genetic algorithms and evolution strategies in engineering and computer science, pp 267–288

  30. Richart FE, Hall JR, Woods RD (1970) Vibrations of soils and foundations. International series in theoretical and applied mechanics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  31. Rokonuzzaman M, Sakai T (2010) Calibration of the parameters for a hardening–softening constitutive model using genetic algorithms. Comput Geotech 37(4):573–579

    Article  Google Scholar 

  32. Samarajiva P, Macari EJ, Wathugala W (2005) Genetic algorithms for the calibration of constitutive models for soils. Int J Geomech 5(3):206–217

    Article  Google Scholar 

  33. Sobol IM (1967) On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Math Phys 7(4):86–112

    Article  MathSciNet  MATH  Google Scholar 

  34. Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Article  Google Scholar 

  35. Taiebat M, Dafalias YF (2008) SANISAND: simple anisotropic sand plasticity model. Int J Numer Anal Methods Geomech 32(8):915–948

    Article  MATH  Google Scholar 

  36. Vermeer P (1978) A double hardening model for sand. Geotechnique 28(4):413–433

    Article  Google Scholar 

  37. Wajczyk T, Link R (2012) The influence of optimization algorithm on suction muffler design. In: Proceedings of the international compressor engineering conference, vol 1181, pp 1–9, Purdue University, Purdue, 16–19 July 2012

  38. Yin ZY, Chang CS (2013) Stress–dilatancy behavior for sand under loading and unloading conditions. Int J Numer Anal Methods Geomech 37(8):855–870

    Article  Google Scholar 

  39. Yin ZY, Hicher PY (2008) Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. Int J Numer Anal Methods Geomech 32(12):1515–1535

    Article  MATH  Google Scholar 

  40. Yin ZY, Chang CS, Hicher PY (2010) Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. Int J Solids Struct 47(14–15):1933–1951

    Article  MATH  Google Scholar 

  41. Yin Z-Y, Zhao J, Hicher P-Y (2014) A micromechanics-based model for sand–silt mixtures. Int J Solids Struct 51(6):1350–1363

    Article  Google Scholar 

  42. Zentar R, Hicher P, Moulin G (2001) Identification of soil parameters by inverse analysis. Comput Geotech 28(2):129–144

    Article  Google Scholar 

  43. Zhang Y, Gallipoli D, Augarde CE (2009) Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization. Comput Geotech 36(4):604–615

    Article  Google Scholar 

  44. Zhang Y, Gallipoli D, Augarde C (2013) Parameter identification for elasto-plastic modelling of unsaturated soils from pressuremeter tests by parallel modified particle swarm optimization. Comput Geotech 48:293–303

    Article  Google Scholar 

  45. Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Parallel problem solving from nature-PPSN V, 1998. Springer, pp 292–301

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 41372285, 51579179). In addition, the authors thank Dr Yvon Riou at Ecole Centrale de Nantes, for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, YF., Yin, ZY., Shen, SL. et al. Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis. Acta Geotech. 11, 1131–1145 (2016). https://doi.org/10.1007/s11440-015-0425-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-015-0425-5

Keywords

Navigation