Skip to main content
Log in

Nanoindentation approach characterizing strain rate sensitivity of compressive response of asphalt concrete

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents the results of a study on the use of nanoindentation test to characterize the strain rate-dependent compressive response of asphalt concrete. Nanoindentation is now widely used for characterization and testing of composite as well as single-phase materials. Using a small piece of sample, nanoindentation tests can evaluate material behavior and structure in terms of the elasticity, time-dependent response, yield strength, damage, crack advance, debonding, and fatigues. In this study, a mixture of asphalt and calcium carbonate filler powder filling the intergranular void space of the asphalt concrete was characterized in terms of strain rate sensitivity at room temperature. The indentation hardness is observed to continuously decrease during constant indentation strain rates, but the hardness response clearly indicates positive strain rate dependency when compared at the same indentation depths. Following the constant strain rate tests, indentation creep response of the asphalt–filler mixture was tested at constant load conditions. The strain rate sensitivity values characterized from double logarithmic relationships between indentation hardness and strain rate during constant strain rate and constant load tests are comparable with that determined from uniaxial compression test of cylindrical asphalt concrete samples. The observed indentation size effect on hardness value was analyzed based on an existing size effect model. The size effect in the asphalt–filler mixture, which is stronger than that defined by the model, could be attributed to a plastically graded surface of asphalt–filler sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ashby MF (1970) The deformation of plastically non-homogeneous alloys. Phil Mag 21:399–424

    Article  Google Scholar 

  2. Bearsley S, Forbes A, Haverkamp RG (2004) Direct observation of the asphaltene structure in paving-grade bitumen using confocal laser-scanning microscopy. J Microsc Oxford 215:149–155

    Article  MathSciNet  Google Scholar 

  3. Bobko C, Ulm FJ (2008) The nano-mechanical morphology of shale. Mech Mater 40(4–5):318–337

    Article  Google Scholar 

  4. Bolshakov A, Pharr GM (1998) Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J Mater Res 13(4):1049–1058

    Article  Google Scholar 

  5. Briscoe BJ, Fiori L, Pelillo E (1998) Nano-indentation of polymeric surfaces. J Phys D Appl Phys 31(19):2395–2405

    Article  Google Scholar 

  6. Cao YP, Lu J (2004) A new scheme for computational modeling of conical indentation in plastically graded materials. J Mater Res 19(6):1703–1716

    Article  Google Scholar 

  7. Cariou S, Ulm FJ, Dormieux L (2008) Hardness-packing density scaling relations for cohesive-frictional porous materials. J Mech Phys Solids 56(3):924–952

    Article  MATH  Google Scholar 

  8. Chasiotis I, Chen Q, Odegard GM, Gates TS (2005) Structure-property relationships in polymer composites with micrometer and submicrometer graphite platelets. Exp Mech 45(6):507–516

    Google Scholar 

  9. Chen JJ, Sorelli L, Vandamme M, Ulm FJ, Chanvillard G (2010) A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: evidence for C-S-H/Ca(OH)(2) nanocomposites. J Am Ceram Soc 93(5):1484–1493

    Google Scholar 

  10. Chen X, Xiang Y, Vlassak JJ (2006) Novel technique for measuring the mechanical properties of porous materials by nanoindentation. J Mater Res 21(3):715–724

    Article  Google Scholar 

  11. Cheng YT, Cheng CM (2000) What is indentation hardness? Surf Coat Technol 133:417–424

    Article  Google Scholar 

  12. Cheng YT, Cheng CM (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R-Rep 44(4–5):91–149

    Article  Google Scholar 

  13. Chiang SS, Marshall DB, Evans AG (1982) The response of solids to elastic plastic indentation.1. Stresses and residual-stresses. J Appl Phys 53(1):298–311

    Article  Google Scholar 

  14. Cudmani R, Osinov VA (2001) The cavity expansion problem for the interpretation of cone penetration and pressuremeter tests. Can Geotech J 38(3):622–638

    Article  Google Scholar 

  15. Deguzman MS, Neubauer G, Flinn P, Nix WD (1993) The role of indentation depth on the measured hardness of materials. Thin Films Stress Mech Prop IV 308:613–618

    Google Scholar 

  16. Deirieh A, Ortega JA, Ulm FJ, Abousleiman Y (2012) Nanochemomechanical assessment of shale: a coupled WDS-indentation analysis. Acta Geotech 7(4):271–295

    Google Scholar 

  17. Desai CS (2007) Unified DSC constitutive model for pavement materials with numerical implementation. Int J Geomech ASCE 7(2):83–101

    Article  Google Scholar 

  18. Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41(12):1825–1857

    Article  MathSciNet  MATH  Google Scholar 

  19. Fonseca PC, Jennings HM, Andrade JE (2011) A nanoscale numerical model of calcium silicate hydrate. Mech Mater 43(8):408–419

    Article  Google Scholar 

  20. Ganneau FP, Constantinides G, Ulm FJ (2006) Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials. Int J Solids Struct 43(6):1727–1745

    Article  MATH  Google Scholar 

  21. González JM, Canet JM, Oller S, Miró R (2007) A viscoplastic constitutive model with strain rate variables for asphalt mixtures—numerical simulation. Comput Mater Sci 38(4):543–560

    Google Scholar 

  22. Gregory JR, Spearing SM (2005) Nanoindentation of neat and in situ polymers in polymer-matrix composites. Compos Sci Technol 65(3–4):595–607

    Article  Google Scholar 

  23. Huang BS, Mohammad LN, Wathugala GW (2004) Application of a temperature dependent viscoplastic hierarchical single surface model for asphalt mixtures. J Mater Civ Eng 16(2):147–154

    Article  Google Scholar 

  24. Ishlinsky AJ (1944) The axial-symmetrical problem in plasticity and the Brinell hardness. J Appl Math Mech (USSR) 8:233

    Google Scholar 

  25. Jackson I, Paterson MS (1987) Shear modulus and internal-friction of calcite rocks at seismic frequencies—pressure, frequency and grain-size dependence. Phys Earth Planet Inter 45(4):349–367

    Article  Google Scholar 

  26. Jäger A, Lackner R, Eberhardsteiner J (2007) Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account. Meccanica 42(3):293–306

    Google Scholar 

  27. Jäger A, Lackner R, Stangl K (2007) Microscale characterization of bitumen back-analysis of viscoelastic properties by means of nanoindentation. Int J Mater Res 98(5):404–413

    Google Scholar 

  28. Jennings HM, Thomas JJ, Gevrenov JS, Constantinides G, Ulm FJ (2007) A multi-technique investigation of the nanoporosity of cement paste. Cem Concr Res 37(3):329–336

    Google Scholar 

  29. Johnson KL (1970) The correlation of indentation experiments. J Mech Phys Solids 18:115–126

    Article  Google Scholar 

  30. Katsuki D, Gutierrez M (2011) Viscoelastic damage model for asphalt concrete. Acta Geotech 6(4):231–241

    Article  Google Scholar 

  31. Kermouche G, Loubet JL, Bergheau JM (2008) Extraction of stress-strain curves of elastic-viscoplastic solids using conical/pyramidal indentation testing with application to polymers. Mech Mater 40(4–5):271–283

    Google Scholar 

  32. Kim JR, Drescher A, Newcomb DE (1997) Rate sensitivity of asphalt concrete in triaxial compression. J Mater Civ Eng 9(2):76–84

    Article  Google Scholar 

  33. Lee HJ, Kim YR (1998) Viscoelastic continuum damage model of asphalt concrete with healing. J Eng Mech Asce 124(11):1224–1232

    Article  Google Scholar 

  34. Masad E, Scarpas A (2007) Toward a mechanistic approach for analysis and design of asphalt pavements. Int J Geomech ASCE 7(2):81–82

    Article  Google Scholar 

  35. Mayo MJ, Nix WD (1988) A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 Wt-percent-Pb. Acta Metall 36(8):2183–2192

    Article  Google Scholar 

  36. Mayo MJ, Siegel RW, Narayanasamy A, Nix WD (1990) Mechanical properties of nanophase TiO2 as determined by nanoindentation. J Mater Res 5(5):1073–1082

    Google Scholar 

  37. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425

    Article  MATH  Google Scholar 

  38. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  39. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20

    Article  Google Scholar 

  40. Ortega JA, Ulm FJ, Abousleiman Y (2009) The nanogranular acoustic signature of shale. Geophysics 74(3):D65–D84

    Article  Google Scholar 

  41. Park SW, Kim YR, Schapery RA (1996) A viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete. Mech Mater 24(4):241–255

    Article  Google Scholar 

  42. Park SW, Schapery RA (1997) A viscoelastic constitutive model for particulate composites with growing damage. Int J Solids Struct 34(8):931–947

    Article  MATH  Google Scholar 

  43. Rozeveld SJ, Shin EE, Bhurke A, France L, Drzal LT (1997) Network morphology of straight and polymer modified asphalt cements. Microsc Res Tech 38(5):529–543

    Google Scholar 

  44. Shen L, Cheong WCD, Foo YL, Chen Z (2012) Nanoindentation creep of tin and aluminium: a comparative study between constant load and constant strain rate methods. Mater Sci Eng Struct Mater Prop Microstruct Process 532:505–510

    Google Scholar 

  45. Stangl K, Jager A, Lackner R (2006) Microstructure-based identification of bitumen performance. Road Mater Pavement Des 7:111–142

    Article  Google Scholar 

  46. Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Microindentations on W and Mo oriented single-crystals—an STM study. Acta Metall Mater 41(10):2855–2865

    Google Scholar 

  47. Tabor D (1951) The hardness of metals. Clarendon Press, Oxford

    Google Scholar 

  48. Tandon R, Green DJ, Cook RF (1993) Strength variability in brittle materials with stabilizing and destabilizing resistance fields. Acta Metall Mater 41(2):399–408

    Article  Google Scholar 

  49. Tarefder RA, Zaman AM, Uddin W (2010) Determining hardness and elastic modulus of asphalt by nanoindentation. Int J Geomech 10(3):106–116

    Article  Google Scholar 

  50. Tashman L, Masad E, Little D, Zbib H (2005) A microstructure-based viscoplastic model for asphalt concrete. Int J Plast 21:1659–1685

    Google Scholar 

  51. Ulm FJ (2003) Chemomechanics of concrete at finer scales. Mater Struct 36(261):426–438

    Article  Google Scholar 

  52. Ulm FJ, Vandamme M, Bobko C, Ortega JA (2007) Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. J Am Ceram Soc 90(9):2677–2692

    Google Scholar 

  53. Vu NH, Rangeard D, Martinez J (2005) Discrete analysis of cavity expansion test. Powders and Grains. H. a. M. Garcia-Rojo. Stuttgart, Germany, Taylor & Francis, pp 271–274

  54. Whiteoak D (1990) The Shell bitumen handbook. Shell Bitumen, Surrey

    Google Scholar 

  55. Zaniewski J, Mamlouk M (2007) Pavement preventive maintenance: key to quality highways. Transp Res Rec J Transp Res Board 1680:26–29

    Article  Google Scholar 

Download references

Acknowledgments

Financial support provided by the National Science Foundation under grant no. CMS-0625927 is gratefully acknowledged. The author appreciates Masood Hashemi and Todd Mellema providing us technical support for nanoindentation testing and asphalt bitumen, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Katsuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsuki, D., Gutierrez, M. Nanoindentation approach characterizing strain rate sensitivity of compressive response of asphalt concrete. Acta Geotech. 9, 887–901 (2014). https://doi.org/10.1007/s11440-013-0269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-013-0269-9

Keywords

Navigation