Skip to main content
Log in

A unified theory of ferromagnetic quantum phase transitions in heavy fermion metals

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Motivated by the recent discovery of a continuous ferromagnetic quantum phase transition in CeRh6Ge4 and its distinction from other U-based heavy fermion metals such as UGe2, we develop a unified explanation of their different ground state properties based on an anisotropic ferromagnetic Kondo-Heisenberg model. We employ an improved large-N Schwinger boson approach and predict a full phase diagram containing both a continuous ferromagnetic quantum phase transition for large magnetic anisotropy and first-order transitions for relatively small anisotropy. Our calculations reveal three different ferromagnetic phases including a half-metallic spin selective Kondo insulator with a constant magnetization. The Fermi surface topologies are found to change abruptly between different phases, consistent with that observed in UGe2. At finite temperatures, we predict the development of Kondo hybridization well above the ferromagnetic long-range order and its relocalization near the phase transition, in good agreement with band measurements in CeRh6Ge4. Our results highlight the importance of magnetic anisotropy and provide a unified theory for understanding the ferromagnetic quantum phase transitions in heavy fermion metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Si, and F. Steglich, Science 329, 1161 (2010), arXiv: 1102.4896.

    Article  ADS  Google Scholar 

  2. Y. F. Yang, Rep. Prog. Phys. 79, 074501 (2016), arXiv: 1601.05894.

    Article  ADS  Google Scholar 

  3. Y. F. Yang, D. Pines, and G. Lonzarich, Proc. Natl. Acad. Sci. USA 114, 6250 (2017), arXiv: 1702.08132.

    Article  ADS  Google Scholar 

  4. S. Wirth, and F. Steglich, Nat. Rev. Mater. 1, 16051 (2016).

    Article  ADS  Google Scholar 

  5. P. Coleman, arXiv: 1509.05769.

  6. Y. Yang, and D. Pines, Proc. Natl. Acad. Sci. USA 111, 8398 (2014), arXiv: 1404.4672.

    Article  ADS  Google Scholar 

  7. Y. Komijani, and P. Coleman, Phys. Rev. Lett. 120, 157206 (2018), arXiv: 1710.03345.

    Article  ADS  Google Scholar 

  8. S. J. Yamamoto, and Q. Si, Proc. Natl. Acad. Sci. USA 107, 15704 (2010), arXiv: 0812.0819.

    Article  ADS  Google Scholar 

  9. G. B. Li, G. M. Zhang, and L. Yu, Phys. Rev. B 81, 094420 (2010), arXiv: 0910.1902.

    Article  ADS  Google Scholar 

  10. R. Peters, N. Kawakami, and T. Pruschke, Phys. Rev. Lett. 108, 086402 (2012), arXiv: 1201.3680.

    Article  ADS  Google Scholar 

  11. D. Golež, and R. Žitko, Phys. Rev. B 88, 054431 (2013), arXiv: 1301.2117.

    Article  ADS  Google Scholar 

  12. Q. Liu, B. Shen, M. Smidman, R. Li, Z. Y. Nie, X. Y. Xiao, Y. Chen, H. Lee, and H. Q. Yuan, Sci. China-Phys. Mech. Astron. 61, 077411 (2018), arXiv: 1804.05477.

    Article  ADS  Google Scholar 

  13. Y. F. Yang, Sci. China-Phys. Mech. Astron. 63, 117431 (2020).

    Article  ADS  Google Scholar 

  14. M. Brando, D. Belitz, F. M. Grosche, and T. R. Kirkpatrick, Rev. Mod. Phys. 88, 025006 (2016), arXiv: 1502.02898.

    Article  ADS  Google Scholar 

  15. D. Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev. Lett. 82, 4707 (1999), arXiv: cond-mat/9812420.

    Article  ADS  Google Scholar 

  16. D. Belitz, and T. R. Kirkpatrick, Phys. Rev. B 85, 125126 (2012), arXiv: 1112.5916.

    Article  ADS  Google Scholar 

  17. D. Aoki, K. Ishida, and J. Flouquet, J. Phys. Soc. Jpn. 88, 022001 (2019), arXiv: 1901.00684.

    Article  ADS  Google Scholar 

  18. B. Shen, Y. Zhang, Y. Komijani, M. Nicklas, R. Borth, A. Wang, Y. Chen, Z. Nie, R. Li, X. Lu, H. Lee, M. Smidman, F. Steglich, P. Coleman, and H. Yuan, Nature 579, 51 (2020), arXiv: 1907.10470.

    Article  ADS  Google Scholar 

  19. A. Steppke, R. Küchler, S. Lausberg, E. Lengyel, L. Steinke, R. Borth, T. Lühmann, C. Krellner, M. Nicklas, C. Geibel, F. Steglich, and M. Brando, Science 339, 933 (2013).

    Article  ADS  Google Scholar 

  20. T. R. Kirkpatrick, and D. Belitz, Phys. Rev. Lett. 124, 147201 (2020), arXiv: 1911.02649.

    Article  ADS  Google Scholar 

  21. Y. Wu, Y. Zhang, F. Du, B. Shen, H. Zheng, Y. Fang, M. Smidman, C. Cao, F. Steglich, H. Yuan, J. D. Denlinger, and Y. Liu, Phys. Rev. Lett. 126, 216406 (2021), arXiv: 2104.03600.

    Article  ADS  Google Scholar 

  22. Y. H. Pei, Y. J. Zhang, Z. X. Wei, Y. X. Chen, K. Hu, Y. Yang, H. Q. Yuan, and J. Qi, Phys. Rev. B 103, L180409 (2021), arXiv: 2102.08572.

    Article  ADS  Google Scholar 

  23. C. Pfleiderer, and A. D. Huxley, Phys. Rev. Lett. 89, 147005 (2002), arXiv: cond-mat/0208115.

    Article  ADS  Google Scholar 

  24. T. Terashima, T. Matsumoto, C. Terakura, S. Uji, N. Kimura, M. Endo, T. Komatsubara, and H. Aoki, Phys. Rev. Lett. 87, 166401 (2001).

    Article  ADS  Google Scholar 

  25. Y. Haga, M. Nakashima, R. Settai, S. Ikeda, T. Okubo, S. Araki, T. C. Kobayashi, N. Tateiwa, and Y. Onuki, J. Phys.-Condens. Matter 14, L125 (2002).

    Article  ADS  Google Scholar 

  26. K. Oikawa, T. Kamiyama, H. Asano, Y. Önuki, and M. Kohgi, J. Phys. Soc. Jpn. 65, 3229 (1996).

    Article  ADS  Google Scholar 

  27. J. Wang, and Y. Yang, Phys. Rev. B 104, 165120 (2021).

    Article  ADS  Google Scholar 

  28. H. Zhao, J. Zhang, M. Lyu, S. Bachus, Y. Tokiwa, P. Gegenwart, S. Zhang, J. Cheng, Y. Yang, G. Chen, Y. Isikawa, Q. Si, F. Steglich, and P. Sun, Nat. Phys. 15, 1261 (2019), arXiv: 1907.04255.

    Article  Google Scholar 

  29. H. H. Hill, Nuclear Metallurgy (Metallurgical Society AIME, New York, 1970), p. 2.

    Google Scholar 

  30. J. Rech, P. Coleman, G. Zarand, and O. Parcollet, Phys. Rev. Lett. 96, 016601 (2006), arXiv: cond-mat/0507001.

    Article  ADS  Google Scholar 

  31. E. Lebanon, J. Rech, P. Coleman, and O. Parcollet, Phys. Rev. Lett. 97, 106604 (2006), arXiv: cond-mat/0601015.

    Article  ADS  Google Scholar 

  32. P. Coleman, I. Paul, and J. Rech, Phys. Rev. B 72, 094430 (2005), arXiv: cond-mat/0503001.

    Article  ADS  Google Scholar 

  33. Y. Komijani, and P. Coleman, Phys. Rev. Lett. 122, 217001 (2019), arXiv: 1810.08148.

    Article  ADS  Google Scholar 

  34. J. Wang, Y. Y. Chang, C. Y. Mou, S. Kirchner, and C. H. Chung, Phys. Rev. B 102, 115133 (2020), arXiv: 1901.10411.

    Article  ADS  Google Scholar 

  35. T. N. de Silva, M. Ma, and F. C. Zhang, Phys. Rev. B 66, 104417 (2002), arXiv: cond-mat/0204351.

    Article  ADS  Google Scholar 

  36. J. W. Shu, D. T. Adroja, A. D. Hfflier, Y. J. Zhang, Y. X. Chen, B. Shen, F. Orlandi, H. C. Walker, Y. Liu, C. Cao, F. Steglich, H. Q. Yuan, and M. Smidman, Phys. Rev. B 104, L140411 (2021), arXiv: 2102.12788.

    Article  ADS  Google Scholar 

  37. T. Combier, Ferromagnetic quantum criticality in the uranium-based ternary compounds URhSi, URhAl, and UCoAl, Dissertation for the Doctoral Degree (Université de Grenoble, Grenoble, 2014), pp. 57–74.

    Google Scholar 

  38. A. Valli, T. Schäfer, P. Thunström, G. Rohringer, S. Andergassen, G. Sangiovanni, K. Held, and A. Toschi, Phys. Rev. B 91, 115115 (2015), arXiv: 1410.4733.

    Article  ADS  Google Scholar 

  39. R. Peters, and N. Kawakami, Phys. Rev. B 86, 165107 (2012), arXiv: 1207.6835.

    Article  ADS  Google Scholar 

  40. J. Wang, and Y. F. Yang, Sci. China-Phys. Mech. Astron. 65, 227212 (2022), arXiv: 2109.01868.

    Article  ADS  Google Scholar 

  41. A. Wang, F. Du, Y. Zhang, D. Graf, B. Shen, Y. Chen, Y. Liu, M. Smidman, C. Cao, F. Steglich, and H. Yuan, Sci. Bull. 66, 1389 (2021), arXiv: 2101.08972.

    Article  Google Scholar 

  42. Y. Yang, and D. Pines, Proc. Natl. Acad. Sci. USA 109, E3060 (2012), arXiv: 1206.1115.

    Google Scholar 

  43. K. R. Shirer, A. C. Shockley, A. P. Dioguardi, J. Crocker, C. H. Lin, N. Roberts-Warren, D. M. Nisson, P. Klavins, J. C. Cooley, Y. Yang, and N. J. Curro, Proc. Natl. Acad. Sci. USA 109, E3067 (2012), arXiv: 1206.1879.

    Article  ADS  Google Scholar 

  44. Y. Liu, Sci. China-Phys. Mech. Astron. 64, 127431 (2021).

    Article  ADS  Google Scholar 

  45. P. Coleman, Y. Komijani, and E. J. König, Phys. Rev. Lett. 125, 077001 (2020), arXiv: 1910.03168.

    Article  ADS  Google Scholar 

  46. M. M. Wysokiński, M. Abram, and J. Spałek, Phys. Rev. B 91, 081108 (2015), arXiv: 1411.7937.

    Article  ADS  Google Scholar 

  47. B. H. Bernhard, and C. Lacroix, Phys. Rev. B 92, 094401 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Feng Yang.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303103), the National Natural Science Foundation of China (Grant Nos. 12174429, and 11974397), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, YF. A unified theory of ferromagnetic quantum phase transitions in heavy fermion metals. Sci. China Phys. Mech. Astron. 65, 257211 (2022). https://doi.org/10.1007/s11433-022-1879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1879-2

Keywords

Navigation