Skip to main content
Log in

Metamagnetic transitions and anomalous magnetoresistance in EuAg4As2 crystals

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this work, we systematically studied the magnetic and transport properties of EuAg4As2 single crystals. It was found that the two antiferromagnetic transitions (TN1 = 10 K and TN2=15 K) were driven to lower temperatures by an applied magnetic field. Below TN1, two successive metamagnetic transitions were observed when a magnetic field was applied in the ab plane (H//ab-plane). For both H//ab and H//c, EuAg4As2 showed a positive, unexpectedly large magnetoresistance (up to 202%) in lower magnetic fields below TN1, and a large negative magnetoresistance (up to −78%) at high fields/intermediate temperatures, thus presenting potential applications in magnetic sensors. Finally, the magnetic phase diagrams of EuAg4As2 were constructed for both H//ab and H//c using the resistivity and magnetisation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mitsuda, H. Wada, M. Shiga, H. Aruga Katori, and T. Goto, Phys. Rev. B 55, 12474 (1997).

    Article  ADS  Google Scholar 

  2. C. Feng, Z. Ren, S. Xu, S. Jiang, Z. Xu, G. Cao, I. Nowik, I. Felner, K. Matsubayashi, and Y. Uwatoko, Phys. Rev. B 82, 094426 (2010), arXiv: 1005.0516.

    Article  ADS  Google Scholar 

  3. H. Masuda, H. Sakai, M. Tokunaga, Y. Yamasaki, A. Miyake, J. Shiogai, S. Nakamura, S. Awaji, A. Tsukazaki, H. Nakao, Y. Murakami, T. Arima, Y. Tokura, and S. Ishiwata, Sci. Adv. 2, e1501117 (2016), arXiv: 1703.04127.

    Article  ADS  Google Scholar 

  4. S. Majumdar, R. Mallik, E. V. Sampathkumaran, K. Rupprecht, and G. Wortmann, Phys. Rev. B 60, 6770 (1999), arXiv: cond-mat/9905416.

    Article  ADS  Google Scholar 

  5. C. Yi, S. Yang, M. Yang, L. Wang, Y. Matsushita, S. Miao, Y. Jiao, J. Cheng, Y. Li, K. Yamaura, Y. Shi, and J. Luo, Phys. Rev. B 96, 205103 (2017).

    Article  ADS  Google Scholar 

  6. D. Gignoux, and D. Schmitt, J. Magn. Magn. Mater. 100, 99 (1991).

    Article  ADS  Google Scholar 

  7. S. S. Stoyko, M. Khatun, C. Scott Mullen, and A. Mar, J. Solid State Chem. 192, 325 (2012).

    Article  ADS  Google Scholar 

  8. B. Shen, E. Emmanouilidou, X. Deng, A. McCollam, J. Xing, G. Kotliar, A. I. Coldea, and N. Ni, Phys. Rev. B 98, 235130 (2018), arXiv: 1808.05309.

    Article  ADS  Google Scholar 

  9. B. Gerke, C. Schwickert, S. S. Stoyko, M. Khatun, A. Mar, and R. Pöttgen, Solid State Sci. 20, 65 (2013).

    Article  ADS  Google Scholar 

  10. _B. Shen, C. Hu, H. Cao, X. Gui, E. Emmanouilidou, W. Xie, and N. Ni, Phys. Rev. Mater. 4, 064419 (2020).

    Article  Google Scholar 

  11. D. H. Ryan, S. L. Bud’ko, C. Hu, and N. Ni, AIP Adv. 9, 125050 (2019).

    Article  ADS  Google Scholar 

  12. S. L. Bud’ko, L. Xiang, C. Hu, B. Shen, N. Ni, and P. C. Canfield, Phys. Rev. B 101, 195112 (2020), arXiv: 2001.10574.

    Article  ADS  Google Scholar 

  13. B. Cheng, B. F. Hu, R. H. Yuan, T. Dong, A. F. Fang, Z. G. Chen, G. Xu, Y. G. Shi, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. B 85, 144426 (2012), arXiv: 1204.1736.

    Article  ADS  Google Scholar 

  14. Anupam, C. Geibel, and Z. Hossain, J. Phys.-Condens. Matter 24, 326002 (2012).

    Article  Google Scholar 

  15. J. Tong, J. Parry, Q. Tao, G. H. Cao, Z. A. Xu, and H. Zeng, J. Alloys Compd. 602, 26 (2014).

    Article  Google Scholar 

  16. S. Jiang, Y. Luo, Z. Ren, Z. Zhu, C. Wang, X. Xu, Q. Tao, G. Cao, and Z. Xu, New J. Phys. 11, 025007 (2009), arXiv: 0808.0325.

    Article  ADS  Google Scholar 

  17. F. Weber, A. Cosceev, S. Drobnik, A. Faißt, K. Grube, A. Nateprov, C. Pfleiderer, M. Uhlarz, and H. Löhneysen, Phys. Rev. B 73, 014427 (2006).

    Article  ADS  Google Scholar 

  18. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HangDong Wang or MingHu Fang.

Additional information

This work was supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0300402), the National Natural Science Foundation of China (Grant Nos. 11974095, and 12074335), the Zhejiang Natural Science Foundation (Grant No. LY16A040012), and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Li, L., Yang, Z. et al. Metamagnetic transitions and anomalous magnetoresistance in EuAg4As2 crystals. Sci. China Phys. Mech. Astron. 64, 227011 (2021). https://doi.org/10.1007/s11433-020-1629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1629-x

Navigation