Skip to main content
Log in

Demonstration of essentiality of entanglement in a Deutsch-like quantum algorithm

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum algorithms can be used to efficiently solve certain classically intractable problems by exploiting quantum parallelism. However, the effectiveness of quantum entanglement in quantum computing remains a question of debate. This study presents a new quantum algorithm that shows entanglement could provide advantages over both classical algorithms and quantum algo- rithms without entanglement. Experiments are implemented to demonstrate the proposed algorithm using superconducting qubits. Results show the viability of the algorithm and suggest that entanglement is essential in obtaining quantum speedup for certain problems in quantum computing. The study provides reliable and clear guidance for developing useful quantum algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

    Article  Google Scholar 

  2. T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Hansel, M. Hennrich, and R. Blatt, Phys. Rev. Lett. 106, 130506 (2011).

    Article  ADS  Google Scholar 

  3. H. Wang, Y. He, Y. H. Li, Z. E. Su, B. Li, H. L. Huang, X. Ding, M. C. Chen, C. Liu, J. Qin, J. P. Li, Y. M. He, C. Schneider, M. Kamp, C. Z. Peng, S. Höfling, C. Y. Lu, and J. W. Pan, Nat. Photon 11, 361 (2017).

    Article  ADS  Google Scholar 

  4. H. L. Huang, H. S. Zhong, T. Li, F. G. Li, X. Q. Fu, S. Zhang, X. Wang, and W. S. Bao, Sci. Rep. 7, 15265 (2017).

    Article  ADS  Google Scholar 

  5. Y. He, X. Ding, Z. E. Su, H. L. Huang, J. Qin, C. Wang, S. Unsleber, C. Chen, H. Wang, Y. M. He, X. L. Wang, W. J. Zhang, S. J. Chen, C. Schneider, M. Kamp, L. X. You, Z. Wang, S. Hofling, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 118, 190501 (2017).

    Article  ADS  Google Scholar 

  6. H. L. Huang, W. S. Bao, T. Li, F. G. Li, X. Q. Fu, S. Zhang, H. L. Zhang, and X. Wang, Phys. Lett. A 381, 2673 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. Z. E. Su, Y. Li, P. P. Rohde, H. L. Huang, X. L. Wang, L. Li, N. L. Liu, J. P. Dowling, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 119, 080502 (2017).

    Article  ADS  Google Scholar 

  8. J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z. X. Gong, and C. Monroe, Nature 551, 601 (2017).

    Article  ADS  Google Scholar 

  9. D. Nigg, M. Muller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt, Science 345, 302 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  10. X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 117, 210502 (2016).

    Article  ADS  Google Scholar 

  11. H. L. Huang, Q. Zhao, X. Ma, C. Liu, Z. E. Su, X. L. Wang, L. Li, N. L. Liu, B. C. Sanders, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 119, 050503 (2017).

    Article  ADS  Google Scholar 

  12. H. L. Huang, Y. W. Zhao, T. Li, F. G. Li, Y. T. Du, X. Q. Fu, S. Zhang, X. Wang, and W. S. Bao, Front. Phys. 12, 120305 (2017).

    Article  Google Scholar 

  13. H. L. Huang, W. S. Bao, T. Li, F. G. Li, X. Q. Fu, S. Zhang, H. L. Zhang, and X. Wang, Quantum Inf. Process. 16, 199 (2017).

    Article  ADS  Google Scholar 

  14. D. Lu, K. Li, J. Li, H. Katiyar, A. J. Park, G. Feng, T. Xin, H. Li, G. Long, A. Brodutch, B. Zeng, and R. Laflamme, arXiv: 1701.01198.

  15. H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, Nature 551, 579 (2017).

    Article  ADS  Google Scholar 

  16. Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, and J. W. Pan, Science 354, 83 (2016).

    Article  ADS  Google Scholar 

  17. R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. L. Heras, R. Babbush, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O'Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven, and J. M. Martinis, Nature 534, 222 (2016).

    Article  ADS  Google Scholar 

  18. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Nature 508, 500 (2014).

    Article  ADS  Google Scholar 

  19. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010).

    Book  MATH  Google Scholar 

  20. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, Nature 464, 45 (2010).

    Article  ADS  Google Scholar 

  21. P. W. Shor, SIAM J. Comput. 26, 1484 (1997).

    Article  MathSciNet  Google Scholar 

  22. L. K. Grover, Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC) (ACM, New York, 1996), pp. 212–219.

    Google Scholar 

  23. G. L. Long, Phys. Rev. A 64, 022307 (2001).

    Article  ADS  Google Scholar 

  24. D. R. Simon, SIAM J. Comput. 26, 1474 (1997).

    Article  MathSciNet  Google Scholar 

  25. S. Lloyd, Science 273, 1073 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  26. A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  27. P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113, 130503 (2014).

    Article  ADS  Google Scholar 

  28. S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys 10, 631 (2014).

    Article  Google Scholar 

  29. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  30. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  31. C. H. Bennett, and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  32. E. Bernstein, and U. Vazirani, SIAM J. Comput. 26, 1411 (1997).

    Article  MathSciNet  Google Scholar 

  33. S. Lloyd, Phys. Rev. A 61, 010301 (1999).

    Article  MathSciNet  Google Scholar 

  34. D. A. Meyer, Phys. Rev. Lett. 85, 2014 (2000).

    Article  ADS  Google Scholar 

  35. E. Biham, G. Brassard, D. Kenigsberg, and T. Mor, Theor. Comput. Sci. 320, 15 (2004).

    Article  Google Scholar 

  36. O. Biham, M. A. Nielsen, and T. J. Osborne, Phys. Rev. A 65, 062312 (2002).

    Article  ADS  Google Scholar 

  37. G. Castagnoli, Found Phys. 46, 360 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  38. D. Kenigsberg, T. Mor, and G. Ratsaby, Quantum Inf. Comput. 6, 606 (2006), arXiv: quant-ph/0511272.

    MathSciNet  Google Scholar 

  39. R. Jozsa, arXiv: quant-ph/9707034.

  40. S. C. Ding, and Z. Jin, Chin. Sci. Bull. 52, 2161 (2007).

    Article  Google Scholar 

  41. D. Deutsch, Proc. R. Soc. A-Math. Phys. Eng. Sci. 400, 97 (1985).

    Article  ADS  Google Scholar 

  42. D. Deutsch, and R. Jozsa, Proc. R. Soc. A-Math. Phys. Eng. Sci. 439, 553 (1992).

    Article  ADS  Google Scholar 

  43. C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S. Severini, and L. Wossnig, arXiv: 1707.08561.

  44. J. Carolan, J. D. A. Meinecke, P. J. Shadbolt, N. J. Russell, N. Ismail, K. Worhoff, T. Rudolph, M. G. Thompson, J. L. O'Brien, J. C. F. Matthews, and A. Laing, Nat. Photon 8, 621 (2014).

    Article  ADS  Google Scholar 

  45. S. Gangopadhyay, B. K. Behera, and P. K. Panigrahi, arXiv: 1708.06375.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He-Liang Huang, Wan-Su Bao or Prasanta K. Panigrahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HL., Goswami, A.K., Bao, WS. et al. Demonstration of essentiality of entanglement in a Deutsch-like quantum algorithm. Sci. China Phys. Mech. Astron. 61, 060311 (2018). https://doi.org/10.1007/s11433-018-9175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9175-2

Keywords

Navigation