Skip to main content
Log in

The role of magnetic damping in the r-mode evolution of accreting neutron stars

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The magnetic damping rate was introduced in the evolution equations of r-modes, which shows that r-modes can generate strong toroidal magnetic fields in the core of accreting millisecond pulsars inducing by differential rotation. With consideration of the coupling evolution of r-modes, spin and thermal evolution, we investigated the influence of the magnetic damping on the differential rotation of nonlinear r-modes of accreting neutron stars. We derived the coupling evolution equations of the star involving the magnetic damping rate in the framework of second-order r-mode theory. The numerical results show that the magnetic damping suppressed the nonlinear evolution of r-modes since the saturation amplitude is reduced to a great extent. In particular, because of the presence of the generated toroidal magnetic field, the spin-down of the stars is terminated and the viscous heating effects are also weakened. Moreover, we could obtain a stronger generated toroidal magnetic field in the second-order r-mode theory. The gravitational radiation may be detected by the advanced laser interferometer detector LIGO if the amount of differential rotation is small when the r-mode instability becomes active and the accretion rate is not very high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu Y W, Cheng K S, Cao X F. The role of newly born magnetars in Gamma-ray burst X-ray afterglow emission: Energy injection and internal emission. Astrophys J, 2010, 715: 477–484

    Article  ADS  Google Scholar 

  2. Cheng Q, Yu Y W. How can newly born rapidly rotating neutron stars become magnetars. Astrophys J Lett, 2014, 786: L13

    Article  ADS  Google Scholar 

  3. Andersson N, Kokkotas K D. The r-mode instability in rotating neutron stars. Int J Mod Phys D, 2001, 10: 381–441

    Article  ADS  Google Scholar 

  4. Bildsten L. Gravitational radiation and rotation of accreting neutron stars. Astrophys J, 1998, 501: L89–L93

    Article  ADS  Google Scholar 

  5. Andersson N, Kokkotas K D, Stergioulas N. On the relevance of the r-mode instability for accreting neutron stars and white dwarfs. Astrophys J, 1999, 516: 307–314

    Article  ADS  Google Scholar 

  6. Ho WC G, Andersson N, Haskell B. Revealing the physics of r-modes in low-mass X-ray binaries. Phys Rev Lett, 2011, 107: 101101

    Article  ADS  Google Scholar 

  7. Haskell B, Degenaar N, Ho W C G. Constraining the physics of the r-mode instability in neutron stars with X-ray and ultraviolet observations. Mon Not R Astron Soc, 2012, 424: 93–103

    Article  ADS  Google Scholar 

  8. Cuofano C, Drago A. Magnetic fields generated by r-modes in accreting millisecond pulsars. Phys Rev D, 2010, 82: 084027

    Article  ADS  Google Scholar 

  9. Bonanno L, Cuofano C, Drago A, et al. Magnetic fields generated by r-modes in accreting quark stars. Astron Astrophys, 2011, 532: A15

    Article  ADS  Google Scholar 

  10. Cuofano C, Dall’Osso S, Drago A. Generation of strong magnetic fields by r-modes in millisecond accreting neutron stars: Induced deformations and gravitational wave emission. Phys Rev D, 2012, 86: 044004

    Article  ADS  Google Scholar 

  11. Cuofano C, Drago A, Pagliara G. Growth of magnetic fields in accreting millisecond pulsars. Mon Not R Astron Soc, 2013, 428: 1438–1441

    Article  ADS  Google Scholar 

  12. Sá P M. Differential rotation of nonlinear r-modes. Phys Rev D, 2004, 69: 084001

    Article  ADS  Google Scholar 

  13. Sá P M, Tomé B. Nonlinear evolution of r-modes: The role of differential rotation. Phys Rev D, 2005, 71: 044007

    Article  ADS  Google Scholar 

  14. Sá P M, Tomé B. Influence of differential rotation on the detectability of gravitational waves from the r-mode instability. Phys Rev D, 2006, 74: 044011

    Article  ADS  Google Scholar 

  15. Owen B J, Lindblom L, Cutler C, et al. Gravitational waves from hot young rapidly rotating neutron stars. Phys Rev D, 1998, 58: 084020

    Article  ADS  Google Scholar 

  16. Yu Y W, Cao X F, Zheng X P. Long-term evolution and gravitational wave radiation of neutron stars with differential rotation induced by r-modes. Res Astron Astrophys, 2009, 9: 1024–1034

    Article  ADS  Google Scholar 

  17. Andersson N, Jones D I, Kokkotas K D. Strange stars as persistent sources of gravitational waves. Mon Not R Astron Soc, 2002, 337: 1224–1232

    Article  ADS  Google Scholar 

  18. Rezzolla L, Lamb F K, Shapiro S L. r-mode oscillations in rotating magnetic neutron stars. Astrophys J, 2000, 531: L139

    Article  ADS  Google Scholar 

  19. Rezzolla L, Lamb F K, Marković D, et al. Properties of r-modes in rotating magnetic neutron stars. I. Kinematic secular effects and magnetic evolution equations. Phys Rev D, 2001, 64: 104013

    Article  ADS  Google Scholar 

  20. Rezzolla L, Lamb F K, Marković D. et al. Properties of r-modes in rotating magnetic neutron stars. II. Evolution of the r modes and stellar magnetic field. Phys Rev D, 2001, 64: 104014

    Article  ADS  Google Scholar 

  21. Watts A L, Andersson N. The spin evolution of nascent neutron stars. Mon Not R Astron Soc, 2002, 333: 943–951

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoJie Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Zhou, X. & Wang, N. The role of magnetic damping in the r-mode evolution of accreting neutron stars. Sci. China Phys. Mech. Astron. 58, 1–6 (2015). https://doi.org/10.1007/s11433-014-5573-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5573-3

Keywords

Navigation