Skip to main content
Log in

On a class of quantum Turing machine halting deterministically

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We consider a subclass of quantum Turing machines (QTM), named stationary rotational quantum Turing machine (SR-QTM), which halts deterministically and has deterministic tape head position. A quantum state transition diagram (QSTD) is proposed to describe SR-QTM. With QSTD, we construct a SR-QTM which is universal for all near-trivial transformations. This indicates there exists a QTM which is universal for the above subclass. Finally we show that SR-QTM is computational equivalent with ordinary QTM in the bounded error setting. It can be seen that SR-QTMs have deterministic tape head position and halt deterministically, and thus the halting scheme problem will not exist for this class of QTMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Deutsch D. Quantum-theory, the church-Turing principle and the universal quantum computer. Proc R Soc Lond A, 1985, 400(1818): 97–117

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Myers JM. Can a universal quantum computer be fully quantum? Phys Rev Lett, 1997, 78(9): 1823–1824

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Ozawa M. Quantum nondemolition monitoring of universal quantum computers. Phys Rev Lett, 1998, 80(3): 631–634

    Article  ADS  Google Scholar 

  4. Linden N, Popescu S. The halting problem for quantum computers. arXiv:quant-ph/9806054

  5. Ozawa M. Halting of quantum Turing machines. In: Calude C S, ed. Unconventional Models of Computation. Berlin: Springer-Verlag, 2002. LNCS 2509: 58-65

    Google Scholar 

  6. Kieu T, Danos M. A no-go theorem for halting a universal quantum computer. Physica A, 2001, 14(1): 217–225

    Google Scholar 

  7. Shi Y. Remarks on universal quantum computer. Phys Lett A, 2002, 293(5–6): 277–282

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Fouche W, Heidema J, Jones G, et al. Halting in quantum Turing computation. In: Adamatzky A, Bull L, Costello B, et al., eds. Unconventional Computing 2007. Bristol: Luniver Press, 2007. 101–112

    Google Scholar 

  9. Bernstein E, Vazirani U. Quantum complexity theory. SIAMJ Comput, 1997, 26(5): 1411–1473

    Article  MathSciNet  MATH  Google Scholar 

  10. Miyadera T, Ohya M. On halting process of quantum turing machine. Open Syst Inf Dyn, 2005, 12(3): 261–264

    Article  MathSciNet  MATH  Google Scholar 

  11. Liang M, Yang L. Universal quantum circuit of near-trivial transformations. Sci China-Phys Mech Astron, 2011, 54(10): 1819–1827

    Article  MathSciNet  ADS  Google Scholar 

  12. Watrous J. On one-dimensional quantum cellular automata. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science. Milwaukee: IEEE, 1995. 528–537

    Google Scholar 

  13. Hook L R I, Lee S C. Quantum state transition diagrams-a bridge from classical computing to quantum computing. Proc SPIE, 2010, 7646: 76460R

    Article  ADS  Google Scholar 

  14. Barenco A, Bennett C, Cleve R, et al. Elementary gates for quantum computation. Phys Rev A, 1995, 52(5): 3457–3467

    Article  ADS  Google Scholar 

  15. Nielsen M, Chuang I. Quantum Computation and Quantum Information. England: Cambridge University Press, 2000. 175–176

    MATH  Google Scholar 

  16. Bera D, Fenner S, Green F, et al. Universal quantum circuits. arXiv:0804.2429

  17. Nishimura H, Ozawa M. Computational complexity of uniform quantum circuit families and quantum Turing machines. Theor Comput Sci, 2002, 276(1-2): 147–181

    Article  MathSciNet  MATH  Google Scholar 

  18. Yao A. Quantum circuit complexity. In: Proceedings of the 34th Annual Symposium on Foundations of Computer Science. Palo Alto: IEEE, 1993. 352–361

    Google Scholar 

  19. Nishimura H, Ozawa M. Perfect computational equivalence between quantum Turing machines and finitely generated uniform quantum circuit families. Quantum Inf Proc, 2009, 8(1): 13–24

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, M., Yang, L. On a class of quantum Turing machine halting deterministically. Sci. China Phys. Mech. Astron. 56, 941–946 (2013). https://doi.org/10.1007/s11433-013-5048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5048-y

Keywords

Navigation