Skip to main content
Log in

Design and implementation of Chinese libration point missions

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Libration points are vital for lunar and deep space explorations because of their unique positions and dynamics. This paper first traces the development of relevant missions since ISEE-3 and then presents the details of the trajectory design and implementation of four Chinese libration point missions in the lunar exploration project: the two Sun-Earth libration point missions by CHANG’E-2 and CHANG’E-5 and the two lunar libration point missions accomplished by CHANG’E-5T1 and Queqiao. The orbit technologies for these libration point missions are also elaborated on regarding trajectory design, maneuvering, and tracking, as well as orbit determination. This paper is expected to provide a reference for future cislunar and deep space exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Farquhar R W. Fifty Years on the Space Frontier: Halo Orbits, Comets, Asteroids, and More. Colorado: Outskirts Press, 2011

    Google Scholar 

  2. Lo M, Ross S. The Lunar L1 gateway: portal to the stars and beyond. In: Proceedings of AIAA Space 2001 Conference, Albuquerque, 2001

  3. Wilson III L B, Brosius A L, Gopalswamy N, et al. A quarter century of wind spacecraft discoveries. Rev Geophys, 2021, 59: e2020RG000714

    Article  Google Scholar 

  4. Domingo V, Fleck B, Poland A I. The SOHO mission: an overview. Sol Phys, 1995, 162: 1–37

    Article  Google Scholar 

  5. Stone E C, Frandsen A M, Mewaldt R A, et al. The advanced composition explorer. Space Sci Rev, 1998, 86: 1–22

    Article  Google Scholar 

  6. Lo M, Chung M. Lunar sample return via the interplanetary superhighway. In: Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit Monterey, 2002

  7. Burt J, Smith B. Deep space climate observatory: the DSCOVR mission. In: Proceedings of 2012 IEEE Aerospace Conference, 2012

  8. Racca G D, McNamara P W. The LISA pathfinder mission: tracing Einstein’s geodesics in space. Space Sci Rev, 2010, 151: 159–181

    Article  Google Scholar 

  9. Liu L, Liu Y, Chen M, et al. Trajectory schemes of Chang’e-5 extended missions to libration points (in Chinese). J Astronaut, 2022, 43: 293–300

    Google Scholar 

  10. Bennett C L, Larson D, Weiland J L, et al. Nine-year wilkinson microwave anisotropy probe (WMAP) observations: final maps and results. Astrophys J Suppl Ser, 2013, 208: 20

    Article  Google Scholar 

  11. Mandolesi N, Burigana C, Gruppuso A, et al. An overview of the Planck mission. Proc IAU, 2010, 6: 268–273

    Article  Google Scholar 

  12. Pilbratt G L. Herschel mission overview and key programmes. In: Proceedings of SPIE, Marseille, 2008

  13. Perryman M A. Overview of the Gaia mission. In: Proceedings of Astrometry in the Age of the Next Generation of Large Telescopes, 2005. 338: 3–14

    Google Scholar 

  14. Pavlinsky M, Levin V, Akimov V, et al. ART-XC/SRG overview. In: Proceedings of SPIE 10699, Austin, 2018

  15. Greenhouse M. The James Webb Space Telescope: mission overview and status. In: Proceedings of IEEE Aerospace Conference, Big Sky, 2016

  16. Wu W R, Liu Y, Liu L, et al. Pre-LOI trajectory maneuvers of the CHANG’E-2 libration point mission. Sci China Inf Sci, 2012, 55: 1249–1258

    Article  Google Scholar 

  17. Liu L, Liu Y, Cao J F, et al. CHANG’E-2 lunar escape maneuvers to the Sun-Earth L2 libration point mission. Acta Astronaut, 2014, 93: 390–399

    Article  Google Scholar 

  18. Wu W R, Cui P Y, Qiao D, et al. Design and performance of exploring trajectory to Sun-Earth L2 point for Chang’E-2 mission. Chin Sci Bull, 2012, 57: 1987–1991

    Article  Google Scholar 

  19. Zhou W Y, Huang H, Liu D C, et al. Orbit design of the Chang’E-2 extended mission of Sun-Earth L2 (in Chinese). Sci Sin Tech, 2013, 43: 609–613

    Google Scholar 

  20. Belbruno E A, Carrico J P. Calculation of weak stability boundary ballistic lunar transfer trajectories. In: Proceedings of AIAA/AAS Astrodynamics Specialist Conference Denver, 2000

  21. Belbruno E, Miller J. A Ballistic Lunar Capture Trajectory for the Japanese Spacecraft Hiten. Technical Report, JPL IOM 312/90.4-1731-EAB, 1990

  22. Koon W S, Lo M W, Marsden J E, et al. Low energy transfer to the Moon. Celestial Mech Dynamical Astron, 2001, 81: 63–73

    Article  MathSciNet  MATH  Google Scholar 

  23. Mingotti G, Topputo F, Bernelli-Zazzera F. Low-energy, low-thrust transfers to the Moon. Celest Mech Dyn Astr, 2009, 105: 61–74

    Article  MathSciNet  MATH  Google Scholar 

  24. Parker J S. Targeting low-energy ballistic lunar transfers. J Astronaut Sci, 2011, 58: 311–334

    Article  Google Scholar 

  25. McCarthy B P, Howell K C. Ballistic lunar transfer design to access cislunar periodic and quasi-periodic orbits leveraging flybys of the Moon. In: Proceedings of the 72th International Astronautical Congress, Dubai, 2021

  26. Roncoli R, Fujii K. Mission design overview for the Gravity Recovery and Interior Laboratory (GRAIL) mission. In: Proceedings of AIAA/AAS Astrodynamics Specialist Conference, Toronto, 2010

  27. Cheetham B, Gardner T, Thompson A, et al. CAPSTONE: a unique CubeSat platform for a navigation demonstration in cislunar space. In: Proceedings of ASCEND 2022, Las Vegas, 2022

  28. Choi S J, Whitley R, Condon G, et al. Trajectory design for the Korea Pathfinder Lunar Orbiter (KPLO). In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, Snowbird, 2018. 1231–1244

  29. Tantardini M, Fantino E, Ren Y, et al. Spacecraft trajectories to the L3 point of the Sun-Earth three-body problem. Celest Mech Dyn Astr, 2010, 108: 215–232

    Article  MATH  Google Scholar 

  30. Olson J, Craig D, Malig K, et al. Voyages: Charting the Course for Sustainable Human Space Exploration. Report of NASA. Washington: NASA, 2012

    Google Scholar 

  31. Liu L, Chen M, Zhang Z, et al. Progress on application and research of Earth-Moon libration orbits (in Chinese). J Astronaut, 2019, 40: 849–860

    Google Scholar 

  32. Heppenheimer T A. Steps toward space colonization — Colony location and transfer trajectories. J Spacecraft Rockets, 1978, 15: 305–312

    Article  Google Scholar 

  33. Laufer R, Tost W, Zeile O, et al. The Kordylewsky Clouds—an example for a cruise phase observation during the Lunar Mission BW1. In: Proceedings of the 11th ISU Annual International Symposium, Strasbourg, 2007

  34. Folta D C, Woodard M A, Cosgrove D. Stationkeeping of the first Earth-Moon libration orbiters: the ARTEMIS mission. In: Proceedings of AIAA/AAS Astrodynamics Specialists Conference, Girdwood AK, 2011

  35. Liu L, Tang G-S, Hu S-J, et al. Follow-up flight scheme for the reentry test of China lunar exploration (in Chinese). J Astronaut, 2015, 36: 883–891

    Google Scholar 

  36. Liu L, Li J S. CHANG’E-5T1 extended mission: the first lunar libration point flight via a lunar swing-by. Adv Space Res, 2016, 58: 609–618

    Article  Google Scholar 

  37. Liu L, Hu C Y. Scheme design of the CHANG’E-5T1 extended mission. Chin J Aeronautics, 2018, 31: 1559–1567

    Article  Google Scholar 

  38. Liu L, Liu Y. Orbit maintenance of CHANG’E-5T1 Earth-Moon libration mission. In: Proceedings of the 4th IAA Conference on Dynamics and Control of Space Systems (Dycoss2018), Changsha, 2018

  39. Meng Z F, Gao S, Wang Z S, et al. Trajectory design for extended mission of circumlunar return and reentry test. In: Proceedings of the 4th IAA Conference on Dynamics and Control of Space Systems (Dycoss2018), Changsha, 2018

  40. Wu W R, Wang Q, Tang Y H, et al. Design of Chang’E-4 lunar farside soft-landing mission (in Chinese). J Deep Space Exploration, 2017, 4: 111–117

    Google Scholar 

  41. Wu W R, Yu D Y, Wang C, et al. Technological breakthrough and scientific achievement of Chang’e-4 project (in Chinese). Sci Sin Inform, 2020, 50: 1783–1797

    Article  Google Scholar 

  42. Wang Q, Liu J. A Chang’e-4 mission concept and vision of future Chinese lunar exploration activities. Acta Astronaut, 2016, 127: 678–683

    Article  Google Scholar 

  43. Zhang L H, Xiong L, Wang P, et al. The mission analysis and system design of Chang’e-4 lunar relay communication satellite (in Chinese). J Deep Space Exploration, 2018, 5: 515–523

    Google Scholar 

  44. Liu L, Zhai H, Gao C. Optimization of transfer trajectory to lunar L2 libration point via a lunar swing-by. In: Proceedings of Global Space Exploration Conference (GLEX 2021), St Petersburg, 2021

  45. Tu C Y, Schwenn R, Donovan E, et al. Space weather explorer—the KuaFu mission. Adv Space Res, 2008, 41: 190–209

    Article  Google Scholar 

  46. Wu W R, Liu J Z, Tang Y H, et al. China lunar exploration program (in Chinese). J Deep Space Exploration, 2019, 6: 405–416

    Google Scholar 

  47. Masdemont J J, Gómez G, Lei L, et al. Global analysis of direct transfers from Lunar orbits to Sun-Earth libration point regimes. Celest Mech Dyn Astr, 2021, 133: 15

    Article  MATH  Google Scholar 

  48. Liu L, Liu Y, Cao J F, et al. Mission design of the CHANG’E 2 asteroid exploration (in Chinese). J Astronaut, 2014, 35: 262–268

    Google Scholar 

  49. Huang J C, Wang X L, Meng L Z, et al. Analysis of engineering parameters of Chang’e-2 flying by Asteroid 4179. Sci Sin Tech, 2013, 43: 596–601

    Google Scholar 

  50. Cao J F, Hu S J, Liu L, et al. Orbit determination and analysis for Chang’E-2 asteroid exploration (in Chinese). J Beijing Univ Aeronaut Astronaut, 2014, 40: 1095–1101

    Google Scholar 

  51. Farquhar R W. The Utilization of Halo Orbits in Advanced Lunar Operations. NASA TN D-6365, 1971

  52. Farquhar R W. Final Report for Lunar Libration Point Flight Dynamics Study. Contract NAS-5-11551, General Electric Co., 1969

  53. Li M T. Low energy trajectory design and optimization for colinear libration points missions (in Chinese). Dissertation for Ph.D. Degree. Beijing: Chinese Academy of Sciences, 2010

    Google Scholar 

  54. Gordon D P. Transfers to Earth-Moon L2 Halo Orbits Using Lunar Proximity and Invariant Manifolds. Silafalea: Purdue University, 2008

    Google Scholar 

  55. Gómez G, Masdemont J, Mondelo J M. Libration point orbits: a survey from the dynamical point of view. In: Proceedings of the Conference on Libration Point Orbits and Applications, 2002

  56. Poincaré H, Magini R. Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, 1892, 1893, 1899

  57. Szebehely V. Theory of Orbits. Pittsburgh: Academic Press, 1967

    MATH  Google Scholar 

  58. Hénon M. Numerical exploration of the restricted problem. V. Hill’s case: periodic orbits and their stability. Astronomy Astrophy, 1970, 9: 24–36

    MATH  Google Scholar 

  59. Héenon M. Numerical exploration of the restricted problem. VI. Hill’s case: non-periodic orbits and their stability. Astronomy Astrophy, 1969, 1: 223–238

    Google Scholar 

  60. Robin I A, Markellos V V. Numerical determination of three-dimensional periodic orbits generated from vertical self-resonant satellite orbits. Celestial Mech, 1980, 21: 395–434

    Article  MathSciNet  MATH  Google Scholar 

  61. Zagouras C G, Kazantzis P G. Three-dimensional periodic oscillations generating from plane periodic ones around the collinear Lagrangian points. Astrophys Space Sci, 1979, 61: 389–409

    Article  MATH  Google Scholar 

  62. Howell K C, Campbell E T. Families of periodic orbits that bifurcate from halo families in the circular restricted three-body problem. In: Proceedings of AAS/AIAA Space Flight Mechanics Conference, Colorado, 1999

  63. Meyer K R, Hall G R. Introduction to Hamiltonian Dynamical Systems and the n-body Problem. Berlin: Springer, 1992

    Book  MATH  Google Scholar 

  64. Farquhar R W, Kamel A A. Quasi-periodic orbits about the translunar libration point. Celestial Mech, 1973, 7: 458–473

    Article  MATH  Google Scholar 

  65. Breakwell J V, Brown J V. The ‘Halo’ family of 3-dimensional periodic orbits in the Earth-Moon restricted 3-body problem. Celestial Mech, 1979, 20: 389–404

    Article  MATH  Google Scholar 

  66. Popescu M, Cardoş V. The domain of initial conditions for the class of three-dimensional halo periodical orbits. Acta Astronaut, 1995, 36: 193–196

    Article  Google Scholar 

  67. Richardson D L. Analytic construction of periodic orbits about the collinear points. Celestial Mech, 1980, 22: 241–253

    Article  MathSciNet  MATH  Google Scholar 

  68. Howell K C, Breakwell J V. Almost rectilinear halo orbits. Celestial Mech, 1984, 32: 29–52

    Article  MathSciNet  MATH  Google Scholar 

  69. Howell K C, Pernicka H J. Numerical determination of Lissajous trajectories in the restricted three-body problem. Celestial Mech, 1987, 41: 107–124

    Article  MATH  Google Scholar 

  70. Marchand B G, Howell K C, Wilson R S. Improved corrections process for constrained trajectory design in the n-body problem. J Spacecraft Rockets, 2007, 44: 884–897

    Article  Google Scholar 

  71. Gómez G, Àngel J, Simó C, et al. Dynamics and Mission Design Near Libration Points. New Jersey: World Scientific, 2001

    Book  MATH  Google Scholar 

  72. Kechichian J A. Computational aspects of transfer trajectories to Halo orbits. J Guidance Control Dyn, 2001, 24: 796–804

    Article  Google Scholar 

  73. Simó C, Stuchi T J. Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem. Physica D Nonlinear Phenomena, 2000, 140: 1–32

    Article  MathSciNet  MATH  Google Scholar 

  74. Scheeres D J. The restricted Hill four-body problem with applications to the Earth-Moon-Sun system. Celestial Mech Dynamical Astron, 1998, 70: 75–98

    Article  MathSciNet  MATH  Google Scholar 

  75. Simó C, Gómez G, Jorba A, et al. The Bicircular Model Near the Triangular Libration Points of the RTBP: From Newton to Chaos. New York: Plenum Press, 1995

    Book  MATH  Google Scholar 

  76. Andreu M A. The quasi-bicircular problem. Dissertation for Ph.D. Degree. Barcelona: Universitat de Barcelona, 1999

    Google Scholar 

  77. Lo M W. The interplanetary superhighway and the origins program. In: Proceedings of IEEE Aerospace Conference Big Sky, 2002

  78. Simó C, Gómez G, Llibre J, et al. Station keeping of a quasiperiodic halo orbit using invariant manifolds. In: Proceedings of the 2nd International Symposium on Spacecraft Flight Dynamics. Darmstadt: European Space Agency, 1986

    Google Scholar 

  79. Gómez G, Howell K C, Masdemont J, et al. Station-keeping strategies for translunar libration point orbits. Adv Astronaut Sci, 1998, 99: 949969

    Google Scholar 

  80. Howell K C, Pernicka H J. Station-keeping method for libration point trajectories. J Guidance Control Dyn, 1993, 16: 151–159

    Article  Google Scholar 

  81. Folta D C, Pavlak T A, Haapala A F, et al. Earth-Moon libration point orbit stationkeeping: theory, modeling, and operations. Acta Astronaut, 2014, 94: 421–433

    Article  Google Scholar 

  82. Hill K. Autonomous navigation in libration point orbits. Dissertation for Ph.D. Degree. Denve: University of Colorado, 2007

    Google Scholar 

  83. Godard B, Croon M, Budnik F, et al. Orbit determination of the Planck satellite. In: Proceedings of the 21st International Symposium on Space Flight Dynamics-21st ISSFD, Toulouse, 2009

  84. Woodard M, Cosgrove D, Morinelli P, et al. Orbit determination of spacecraft in Earth-Moon L1 and L2 libration point orbits. In: Proceedings of AIAA/AAS Astrodynamics Specialists Conference, Girdwood AK, 2011

  85. Cao J F. Orbit Determination for CE-2 Libration flight and asteroid exploration trial. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2013

    Google Scholar 

  86. Huang Y, Li P J, Fan M, et al. Orbit determination of CE-5T1 in Earth-Moon L2 libration point orbit with ground tracking data. Sci Sin-Phys Mech Astron, 2018, 48: 079501

    Article  Google Scholar 

  87. Qin S H, Huang Y, Li P J, et al. Orbit and tracking data evaluation of Chang’E-4 relay satellite. Adv Space Res, 2019, 64: 836–846

    Article  Google Scholar 

  88. Hill K, Lo M W, Born G H. Linked, autonomous, interplanetary satellite orbit navigation (LiAISON). In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, 2005

  89. Hill K, Born G H, Lo M W. Linked, autonomous, interplanetary satellite orbit navigation (LiAISON) in lunar halo orbits. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, 2005

  90. Hill K, Parker J, Born G H, et al. A lunar L2 navigation, communication, and gravity mission. In: Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, 2006

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11303001, 11773004, 61573049) and Major Special Project of the National Lunar Exploration Program of China. The authors would like to especially acknowledge the contributions of Prof. Yang GAO, Prof. Xiaojun ZHANG, and the anonymous reviewers for helping to improve this manuscript to its final form. The authors would also like to thank the technicians who participated in the design and implementation of the missions for beneficial inspiration from discussions with them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Additional information

Lei LIU and Wei-Ren WU have the same contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wu, WR. & Liu, Y. Design and implementation of Chinese libration point missions. Sci. China Inf. Sci. 66, 191201 (2023). https://doi.org/10.1007/s11432-022-3716-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3716-9

Keywords

Navigation