Skip to main content
Log in

Paleogene mammalian fauna exchanges and the paleogeographic pattern in Asia

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Mammals are the most important elements in Cenozoic terrestrial ecosystem. The composition and the character of a mammalian fauna are controlled by evolution time and evolutionary rate. Here we took 50 Asian Paleogene mammalian faunas as representatives and applied Bayesian Tip-dating method to infer the relationships and divergence times among these faunas. Based on the results of Bayesian Tip-dating analyses, we discussed the correlation between the paleogeographic changes and the mammalian fauna turn-overs. Compared with the traditional fauna correlation and sorting, Bayesian Tip-dating analyses revealed more detailed similarities reflected via the divergence times among the 50 faunas. We discovered that the early Eocene mammalian fauna, which firstly appeared in India subcontinent, is similar to the faunas of the same age in other parts of Asia. It is likely that a passage for the mammalian dispersal was formed before early Eocene. Bayesian inferring suggests that the first appearance of the dispersal passage is during 64.8–61.3 Ma. This time window is close to the time estimation for the initial time of India-Asia collision. During 57.1–47.2 Ma, India subcontinent probably had a habitat different from the main part of Asia, as it was reflected from the composition of the mammalian faunas. It is probably correlated with the uplifted Gangdese Mountain and shallow seas and lowlands on both sides of the collision region. The very remote divergence time (64.8 Ma) estimated by Bayesian inferring reflects the mammalian fauna turnover during the Eocene-Oligocene transition, obviously affected by the global cooling. Till the end of Oligocene, the Arabic Peninsula and Asian mainland remained separated and the mammalian faunas did not show clear connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilar J P, Legendre S, Michaux J. 1997. Actes du Congrès Biochrom’97. vol 21. Montpellier: Institut de Montpellier. 817

    Google Scholar 

  • Bapst D W, Wright A M, Matzke N J, Lloyd G T. 2016. Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria). Biol Lett, 12: 20160237

    Google Scholar 

  • Beard K C. 2008. The oldest North American primate and mammalian biogeography during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci USA, 105: 3815–3818

    Google Scholar 

  • Beard K C, Dawson M R. 2009. Early Wasatchian mammals of the Red Hot local fauna, uppermost Tuscahoma Formation, Lauderdale County, Mississippi. Ann Carnegie Museum, 78: 193–243

    Google Scholar 

  • Ding L, Kapp P, Wan X. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24: TC3001

    Google Scholar 

  • Ding L, Qasim M, Jadoon I A K, Khan M A, Xu Q, Cai F, Wang H, Baral U, Yue Y. 2016. The India-Asia collision in north Pakistan: Insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin. Earth Planet Sci Lett, 455: 49–61

    Google Scholar 

  • Ding L, Maksatbek S, Cai F L, Wang H Q, Song P P, Ji W Q, Xu Q, Zhang L Y, Muhammad Q, Upendra B. 2017a. Processes of initial collision and suturing between India and Asia. Sci China Earth Sci, 60: 635–651

    Google Scholar 

  • Ding L, Spicer R A, Yang J, Xu Q, Cai F, Li S, Lai Q, Wang H, Spicer T E V, Yue Y, Shukla A, Srivastava G, Khan M A, Bera S, Mehrotra R. 2017b. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45: 215–218

    Google Scholar 

  • Ding L, Xu Q, Yue Y, Wang H, Cai F, Li S. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth Planet Sci Lett, 392: 250–264

    Google Scholar 

  • Drummond A J, Ho S Y W, Phillips M J, Rambaut A, Penny D. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol, 4: e88

    Google Scholar 

  • Fischer A G. 1960. Latitudinal variations in organic diversity. Evolution, 14: 64–81

    Google Scholar 

  • Gavryushkina A, Heath T A, Ksepka D T, Stadler T, Welch D, Drummond A J. 2017. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Systemat Biol, 66: 57–73

    Google Scholar 

  • Gunnell G F, Murphey P C, Stucky R K, Townsend K E B, Robinson P, Zonneveld J P, Bartels W S. 2009. Biostratigraphy and biochronology of the latest Wasatchian, Bridgerian, and Uintain North American Land Mammal “Ages”. In: Albright III L B, ed. Papers and Geology, Vertebrate Paleontology, and Biostratigraph in Honor of Michael O. Woodburne. Flagstaff: Museum of Northern Arizona. 279–330

    Google Scholar 

  • Hastings W K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57: 97–109

    Google Scholar 

  • Hu X, Garzanti E, Wang J, Huang W, An W, Webb A. 2016. The timing of India-Asia collision onset—Facts, theories, controversies. Earth-Sci Rev, 160: 264–299

    Google Scholar 

  • Hu X M, Wang J G, An W, Garzanti E, Li J. 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record. Sci China Earth Sci, 60: 603–625

    Google Scholar 

  • Huelsenbeck J P, Larget B, Swofford D. 2000. A compound poisson process for relaxing the molecular clock. Genetics, 154: 1879

    Google Scholar 

  • Hutchinson G E. 1959. Homage to santa rosalia or why are there so many kinds of animals? Am Natist, 93: 145–159

    Google Scholar 

  • King B, Qiao T, Lee M S Y, Zhu M, Long J A. 2016. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst Biol, 159: syw107

    Google Scholar 

  • Kishino H, Thorne J L, Bruno W J. 2001. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol, 18: 352–361

    Google Scholar 

  • Kraatz B P, Geisler J H. 2010. Eocene-Oligocene transition in Central Asia and its effects on mammalian evolution. Geology, 38: 111–114

    Google Scholar 

  • Lee M S Y. 2016. Multiple morphological clocks and total-evidence tip-dating in mammals. Biol Lett, 12: 20160033

    Google Scholar 

  • Lee M S Y, Cau A, Naish D, Dyke G J. 2014. Morphological clocks in paleontology, and a mid-Cretaceous origin of crown aves. Syst Biol, 63: 442–449

    Google Scholar 

  • Lepage T, Bryant D, Philippe H, Lartillot N. 2007. A general comparison of relaxed molecular clock models. Mol Biol Evol, 24: 2669–2680

    Google Scholar 

  • Lewis P O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. System Biol, 50: 913–925

    Google Scholar 

  • Li Q, Ni X. 2016. An early Oligocene fossil demonstrates treeshrews are slowly evolving “living fossils”. Sci Rep, 6: 18627

    Google Scholar 

  • MacArthur R H. 1972. Geographical Ecology: Patterns in the Distribution of Species. New York: Harper & Row. 269

    Google Scholar 

  • MacLeod K G, Quinton P C, Sepúlveda J, Negra M H. 2018. Postimpact earliest Paleogene warming shown by fish debris oxygen isotopes (El Kef, Tunisia). Science, 360: 1467–1469

    Google Scholar 

  • Matzke N J, Wright A. 2016. Inferring node dates from tip dates in fossil Canidae: The importance of tree priors. Biol Lett, 12: 20160328

    Google Scholar 

  • Meng J, McKenna M C. 1998. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature, 394: 364–367

    Google Scholar 

  • Meng J, Ni X, Li C, Beard K C, Gebo D L, Wang Y, Wang H. 2007. New material of Alagomyidae (Mammalia, Glires) from the late Paleocene Subeng locality, Inner Mongolia. Am Museum Novitates, 3597: 1–29

    Google Scholar 

  • Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E. 1953. Equation of state calculations by fast computing machines. J Chem Phys, 21: 1087–1092

    Google Scholar 

  • Missiaen P, Gingerich P D. 2012. New Early Eocene tapiromorph perissodactyls from the Ghazij Formation of Pakistan, with implications for mammalian biochronology in Asia. Acta Palaeontol Pol, 57: 21–34

    Google Scholar 

  • Missiaen P, Gingerich P D. 2014. New basal perissodactyla (Mammalia) from the lower Eocene Ghazij Formation of Pakistan. Contributions from the Museum of Paleontology University of Michigan, 32: 139–160

    Google Scholar 

  • Missiaen P, Gunnell G F, Gingerich P D. 2011. New Brontotheriidae (Mammalia, Perissodactyla) from the Early and Middle Eocene of Pakistan with implications for mammalian paleobiogeography. J Paleontol, 85: 665–677

    Google Scholar 

  • Ni X, Gebo D L, Dagosto M, Meng J, Tafforeau P, Flynn J J, Beard K C. 2013. The oldest known primate skeleton and early haplorhine evolution. Nature, 498: 60–64

    Google Scholar 

  • Ni X, Hu Y, Wang Y, Li C. 2005. A clue to the Asian origin of euprimates. Anthropol Sci, 113: 3–9

    Google Scholar 

  • Ni X, Li Q, Li L, Beard K C. 2016a. Oligocene primates from China reveal divergence between African and Asian primate evolution. Science, 352: 673–677

    Google Scholar 

  • Ni X, Li Q, Stidham T A, Li L, Lu X, Meng J. 2016b. A late Paleocene probable metatherian (?deltatheroidan) survivor of the Cretaceous mass extinction. Sci Rep, 6: 38547

    Google Scholar 

  • Ni X, Qiu Z. 2002. The micromammalian fauna from the Leilao, Yuanmou hominoid locality: Implications for biochronology and paleoecology. J Human Evol, 42: 535–546

    Google Scholar 

  • O’Leary M A, Bloch J I, Flynn J J, Gaudin T J, Giallombardo A, Giannini N P, Goldberg S L, Kraatz B P, Luo Z X, Meng J, Ni X, Novacek M J, Perini F A, Randall Z S, Rougier G W, Sargis E J, Silcox M T, Simmons N B, Spaulding M, Velazco P M, Weksler M, Wible J R, Cirranello A L. 2013. The placental mammal ancestor and the Post-K-Pg radiation of placentals. Science, 339: 662–667

    Google Scholar 

  • O’Reilly J E, Dos Reis M, Donoghue P C J. 2015. Dating tips for divergence-time estimation. Trends Genets, 31: 637–650

    Google Scholar 

  • Oliveira B F, Machac A, Costa G C, Brooks T M, Davidson A D, Rondinini C, Graham C H. 2016. Species and functional diversity accumulate differently in mammals. Glob Ecol Biogeogr, 25: 1119–1130

    Google Scholar 

  • Qiu Z, Qiu Z, Deng T, Li C, Zhang Z, Wang B, Wang X. 2013. Neogene land mammal stages/ages of China. In: Wang X, Flynn L J, Fortelius M, eds. Fossil Mammals of Asia. Neogene Biostratigraphy and Chronology. New York: Columbia University Press. 29–90

    Google Scholar 

  • Rabosky D L. 2009. Ecological limits and diversification rate: Alternative paradigms to explain the variation in species richness among clades and regions. Ecol Lett, 12: 735–743

    Google Scholar 

  • Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray D L, Rasnitsyn A P. 2012a. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol, 61: 973–999

    Google Scholar 

  • Ronquist F, Lartillot N, Phillips M J. 2016. Closing the gap between rocks and clocks using total-evidence dating. Phil Trans R Soc B, 371: 20150136

    Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres D L, Darling A, Höhna S, Larget B, Liu L, Suchard M A, Huelsenbeck J P. 2012b. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol, 61: 539–542

    Google Scholar 

  • Rose K D. 2006. The Beginning of the Age of Mammals. Baltimore: The Johns Hopkins University Press. 428

    Google Scholar 

  • Rose K D, Rana R S, Sahni A, Kumar K, Missiaen P, Singh L, Smith T. 2009. Early Eocene Primates from Gujarat, India. J Human Evol, 56: 366–404

    Google Scholar 

  • Spicer R, Yang J, Herman A, Kodrul T, Aleksandrova G, Maslova N, Spicer T, Ding L, Xu Q, Shukla A, Srivastava G, Mehrotra R, Liu X Y, Jin J H. 2017. Paleogene monsoons across India and South China: Drivers of biotic change. Gondwana Res, 49: 350–363

    Google Scholar 

  • Sun J, Ni X, Bi S, Wu W, Ye J, Meng J, Windley B F. 2015. Synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in Asia. Sci Rep, 4: 7463

    Google Scholar 

  • Thorne J L, Kishino H, Neilsen R. 2002. Divergence time and evolutionary rate estimation with multilocus data. Syst Biol, 51: 689–702

    Google Scholar 

  • Ting S, Tong Y, Clyde W C, Koch P L, Meng J, Wang Y, Bowen G J, Li Q, Snell K E. 2011. Asian early Paleogene chronology and mammalian faunal turnover events. Vert PalAsiat, 49: 1–28

    Google Scholar 

  • Vandenberghe N, Hilgen F J, Speijer R P, Ogg J G, Gradstein F M, Hammer O, Hollis C J, Hooker J J. 2012. Chapter 28-The Paleogene Period. In: Gradstein F M, Ogg J G, Schmitz M, eds. The Geologic Time Scale. Boston: Elsevier. 855–921

    Google Scholar 

  • Wiens J J, Pyron R A, Moen D S. 2011. Phylogenetic origins of local-scale diversity patterns and the causes of Amazonian megadiversity. Ecol Lett, 14: 643–652

    Google Scholar 

  • Woodburne M O. 2004. Late Cretaceous and Cenozoic Mammals of North America. Biostratigraphy and Geochronology. New York: Columbia University Press. 391

    Google Scholar 

  • Wu F Y, Ji W Q, Wang J G, Liu C Z, Chung S L, Clift P D. 2014. Zircon UPb and Hf isotopic constraints on the onset time of India-Asia collision. Am J Sci, 314: 548–579

    Google Scholar 

  • Yang Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J Mol Evol, 39: 306–314

    Google Scholar 

  • Yao T, Wu F, Ding L, Sun J, Zhu L, Piao S, Deng T, Ni X, Zheng H, Ouyang H. 2015. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: A review of the recent researches. Natl Sci Rev, 2: 468–488

    Google Scholar 

  • Zhang C, Stadler T, Klopfstein S, Heath T A, Ronquist F. 2016. Total-evidence dating under the fossilized birth-death process. Syst Biol, 65: 228–249

    Google Scholar 

  • Zuckerkandl E, Pauling L. 1965. Evolutionary divergence and convergence in proteins. Evolv Genes Prot, 97: 97–166

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA20070203, XDA19050100 & XDB26030300) and the National Natural Science Foundation of China (Grant Nos. 41472025 & 41625005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijun Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Li, Q., Zhang, C. et al. Paleogene mammalian fauna exchanges and the paleogeographic pattern in Asia. Sci. China Earth Sci. 63, 202–211 (2020). https://doi.org/10.1007/s11430-019-9479-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9479-1

Keywords

Navigation