Skip to main content
Log in

Simulated effect of sunshade solar geoengineering on the global carbon cycle

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Solar geoengineering has been proposed as a potential mechanism to counteract global warming. Here we use the University of Victoria Earth System Model (UVic) to simulate the effect of idealized sunshade geoengineering on the global carbon cycle. We conduct two simulations. The first is the A2 simulation, where the model is driven by prescribed emission scenario based on the SRES A2 CO2 emission pathway. The second is the solar geoengineering simulation in which the model is driven by the A2 CO2 emission scenario combined with sunshade solar geoengineering. In the model, solar geoengineering is represented by a spatially uniform reduction in solar insolation that is implemented at year 2020 to offset CO2-induced global mean surface temperature change. Our results show that solar geoengineering increases global carbon uptake relative to A2, in particular CO2 uptake by the terrestrial biosphere. The increase in land carbon uptake is mainly associated with increased net primary production (NPP) in the tropics in the geoengineering simulation, which prevents excess warming in tropics. By year 2100, solar geoengineering decreases A2-simulated atmospheric CO2 by 110 ppm (12%) and causes a 60% (251 Pg C) increase in land carbon accumulation compared to A2. Solar geoengineering also prevents the reduction in ocean oxygen concentration caused by increased ocean temperatures and decreased ocean ventilation, but reduces global ocean NPP. Our results suggest that to fully access the climate effect of solar geoengineering, the response of the global carbon cycle should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bala G, Caldeira K, Mirin A, Wickett M, Delire C, Phillips T J. 2006. Biogeophysical effects of CO2 fertilization on global climate. Tellus BChem Phys Meteorol, 58: 620–627

    Article  Google Scholar 

  • Boden T A, Marland G, Andres R J. 2016. Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge

    Google Scholar 

  • Bopp L, Monfray P, Aumont O, Dufresne J L, Le Treut H, Madec G, Terray L, Orr J C. 2001. Potential impact of climate change on marine export production. Glob Biogeochem Cycle, 15: 81–99

    Article  Google Scholar 

  • Brovkin V, Petoukhov V, Claussen M, Bauer E, Archer D, Jaeger C. 2009. Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure. Clim Change, 92: 243–259

    Article  Google Scholar 

  • Caldeira K, Bala G, Cao L. 2013. The science of geoengineering. Annu Rev Earth Planet Sci, 41: 231–256

    Article  Google Scholar 

  • Cao L, Duan L, Bala G, Caldeira K. 2016. Simulated long-term climate response to idealized solar geoengineering. Geophys Res Lett, 43: 2209–2217

    Article  Google Scholar 

  • Cao L, Wang S, Zheng M, Zhang H. 2014. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change. Environ Res Lett, 9: 064005

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni R B, Piao S, Thornton P. 2013. Carbon and other biogeochemical cycles. In: Stoker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013. The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 465–570

  • Cox P M. 2001. Description of the TRIFFID dynamic global vegetation model. Hadley Centre Technical Note. 24: 1–16

    Google Scholar 

  • Cramer W, Bondeau A, Woodward F I, Prentice I C, Betts R A, Brovkin V, Cox P M, Fisher V, Foley J A, Friend A D, Kucharik C, Lomas M R, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Glob Change Biol, 7: 357–373

    Article  Google Scholar 

  • Crutzen P J. 2006. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Clim Change, 77: 211–220

    Article  Google Scholar 

  • Curry C L, Sillmann J, Bronaugh D, Alterskjaer K, Cole J N S, Ji D, Kravitz B, Kristjánsson J E, Moore J C, Muri H, Niemeier U, Robock A, Tilmes S, Yang S. 2014. A multimodel examination of climate extremes in an idealized geoengineering experiment. J Geophys Res-Atmos, 119: 3900–3923

    Article  Google Scholar 

  • Early J T. 1989. Space-based solar shield to offset greenhouse effect. J Brit Interplanet Soc, 42: 567–569

    Google Scholar 

  • Eby M, Zickfeld K, Montenegro A, Archer D, Meissner K J, Weaver A J. 2009. Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and surface temperature perturbations. J Clim, 22: 2501–2511

    Article  Google Scholar 

  • Eliseev A V, Chernokulsky A V, Karpenko A A, Mokhov I I. 2010. Global warming mitigation by sulphur loading in the stratosphere: Dependence of required emissions on allowable residual warming rate. Theor Appl Climatol, 101: 67–81

    Article  Google Scholar 

  • Govindasamy B, Thompson S, Duffy P B, Caldeira K, Delire C. 2002. Impact of geoengineering schemes on the terrestrial biosphere. Geophys Res Lett, 29: 18-1–18-4

    Article  Google Scholar 

  • Houghton R A, House J I, Pongratz J, van der Werf G R, DeFries R S, Hansen M C, Le Quéré C, Ramankutty N. 2012. Carbon emissions from land use and land-cover change. Biogeosciences, 9: 5125–5142

    Article  Google Scholar 

  • IPCC. 2001. Climate change 2001. In: Metz B, Davidson O, Swart R, eds. Mitigation: Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 752

  • IPCC. 2007. Climate change 2007. In: Solomon S E, ed. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 996

  • Irvine P J, Lunt D J, Stone E J, Ridgwell A. 2009. The fate of the Greenland Ice Sheet in a geoengineered, high CO2 world. Environ Res Lett, 4: 045109

    Article  Google Scholar 

  • Kalidindi S, Bala G, Modak A, Caldeira K. 2015. Modeling of solar radiation management: A comparison of simulations using reduced solar constant and stratospheric sulphate aerosols. Clim Dyn, 44: 2909–2925

    Article  Google Scholar 

  • Keith D W. 2000. Geoengineering the climate: History and prospect. Annu Rev Energy Environ, 25: 245–284

    Article  Google Scholar 

  • Keller D P, Feng E Y, Oschlies A. 2014. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat Commun, 5: 3304

    Article  Google Scholar 

  • Kravitz B, Robock A, Boucher O, Schmidt H, Taylor K E, Stenchikov G, Schulz M. 2011. The Geoengineering model intercomparison project (GeoMIP). Atmos Sci Lett, 12: 162–167

    Article  Google Scholar 

  • Kravitz B, Caldeira K, Boucher O, Robock A, Rasch P J, Alterskjaer K, Karam D B, Cole J N S, Curry C L, Haywood J M, Irvine P J, Ji D, Jones A, Kristjánsson J E, Lunt D J, Moore J C, Niemeier U, Schmidt H, Schulz M, Singh B, Tilmes S, Watanabe S, Yang S, Yoon J H. 2013. Climate model response from the geoengineering model intercomparison project (GeoMIP). J Geophys Res-Atmos, 118: 8320–8332

    Article  Google Scholar 

  • Kravitz B, Robock A, Tilmes S, Boucher O, English J M, Irvine P J, Jones A, Lawrence M G, MacCracken M, Muri H, Moore J C, Niemeier U, Phipps S J, Sillmann J, Storelvmo T, Wang H, Watanabe S. 2015. The geoengineering model intercomparison project phase 6 (GeoMIP6): Simulation design and preliminary results. Geosci Model Dev, 8: 3379–3392

    Article  Google Scholar 

  • Kravitz B, MacMartin D G, Wang H, Rasch P J. 2016. Geoengineering as a design problem. Earth Syst Dynam, 7: 469–497

    Article  Google Scholar 

  • Kvenvolden K A. 2002. Methane hydrate in the global organic carbon cycle. Terra Nova, 14: 302–306

    Article  Google Scholar 

  • Lunt D J, Ridgwell A, Valdes P J, Seale A. 2008. “Sunshade World”: A fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophys Res Lett, 35: L12710

    Article  Google Scholar 

  • Matear R J, Hirst A C. 2003. Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming. Glob Biogeochem Cycle, 17: 1125

    Google Scholar 

  • Matthews H D, Caldeira K. 2007. Transient climate carbon simulations of planetary geoengineering. Proc Natl Acad Sci USA, 104: 9949–9954

    Article  Google Scholar 

  • Matthews H D, Eby M, Ewen T, Friedlingstein P, Hawkins B J. 2007. What determines the magnitude of carbon cycle-climate feedbacks? Glob Biogeochem Cycle, 21: GB2012

    Article  Google Scholar 

  • Meissner K J, Weaver A J, Matthews H D, Cox P M. 2003. The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model. Clim Dyn, 21: 515–537

    Article  Google Scholar 

  • Mercado L M, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox P M. 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458: 1014–1017

    Article  Google Scholar 

  • National Research Council. 2015a. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. Washington D C: The National Academies Press. 154

    Google Scholar 

  • National Research Council. 2015b. Climate Intervention: Reflecting Sun-light to Cool Earth. Washington D C: The National Academies Press. 260

    Google Scholar 

  • Niemeier U, Schmidt H, Alterskjaer K, Kristjánsson J E. 2013. Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle. J Geophys Res- Atmos, 118: 11905–11917

    Article  Google Scholar 

  • Oren R, Ellsworth D S, Johnsen K H, Phillips N, Ewers B E, Maier C, Schäfer K V R, McCarthy H, Hendrey G, McNulty S G, Katul G G. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere.. Nature, 411: 469–472

    Article  Google Scholar 

  • Orr J, Najjar R, Sabine C, Joos F. 1999. Abiotic-HOWTO, internal OCMIP report. LSCE/CEA Saclay, 25

  • Owensby C E, Ham J M, Knapp A K, Auen L M. 1999. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Glob Change Biol, 5: 497–506

    Article  Google Scholar 

  • Plattner G K, Joos F, Stocker T F, Marchal O. 2001. Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus B, 53: 564–592

    Google Scholar 

  • Rasch P J, Tilmes S, Turco R P, Robock A, Oman L, Chen C C, Stenchikov G L, Garcia R R. 2008. An overview of geoengineering of climate using stratospheric sulphate aerosols. Philos Trans R Soc A-Math Phys Eng Sci, 366: 4007–4037

    Article  Google Scholar 

  • Reich P B, Hobbie S E, Lee T, Ellsworth D S, West J B, Tilman D, Knops J M H, Naeem S, Trost J. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440: 922–925

    Article  Google Scholar 

  • Ridgwell A, Singarayer J S, Hetherington A M, Valdes P J. 2009. Tackling regional climate change by leaf albedo bio-geoengineering. Curr Biol, 19: 146–150

    Article  Google Scholar 

  • Robock A. 2014. Stratospheric aerosol geoengineering. Issues Environ Sci Technol, 38: 162–185

    Article  Google Scholar 

  • Salter S, Sortino G, Latham J. 2008. Sea-going hardware for the cloud albedo method of reversing global warming. Philos Trans R Soc AMath Phys Eng Sci, 366: 3989–4006

    Article  Google Scholar 

  • Schmittner A, Oschlies A, Matthews H D, Galbraith E D. 2008. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Glob Biogeochem Cycle, 22: GB1013

    Article  Google Scholar 

  • Sitch S, Huntingford C, Gedney N, Levy P E, Lomas M, Piao S L, Betts R, Ciais P, Cox P, Friedlingstein P, Jones C D, Prentice I C, Woodward F I. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob Change Biol, 14: 2015–2039

    Article  Google Scholar 

  • The Royal Society. 2009. Geoengineering the Climate: Science, Governance and Uncertainty. London: Royal Society

    Google Scholar 

  • Tilmes S, Fasullo J, Lamarque J F, Marsh D R, Mills M, Alterskjaer K, Muri H, Kristjánsson J E, Boucher O, Schulz M, Cole J N S, Curry C L, Jones A, Haywood J, Irvine P J, Ji D, Moore J C, Karam D B, Kravitz B, Rasch P J, Singh B, Yoon J H, Niemeier U, Schmidt H, Robock A, Yang S, Watanabe S. 2013. The hydrological impact of geoengineering in the geoengineering model intercomparison project (GeoMIP). J Geophys Res-Atmos, 118: 11036–11058

    Article  Google Scholar 

  • Tjiputra J F, Grini A, Lee H. 2016. Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles. J Geophys Res-Biogeosci, 121: 2–27

    Article  Google Scholar 

  • Trenberth K E, Fasullo J T, Kiehl J. 2009. Earth’s global energy budget. Bull Amer Meteorol Soc, 90: 311–324

    Article  Google Scholar 

  • Vaughan N E, Lenton T M. 2011. A review of climate geoengineering proposals. Clim Change, 109: 745–790

    Article  Google Scholar 

  • Victor D G, Zhou D, Ahmed E H M, Dadhich P K, Olivier J G J, Rogner H H, Sheikho K, Yamaguchi M. 2014. Climate Change 2014: Mitigation of Climate Change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx J C, eds. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 113–143

  • Weaver A J, Eby M, Wiebe E C, Bitz C M, Duffy P B, Ewen T L, Fanning A F, Holland M M, MacFadyen A, Matthews H D, Meissner K J, Saenko O, Schmittner A, Wang H, Yoshimori M. 2001. The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmos-Ocean, 39: 361–428

    Article  Google Scholar 

Download references

Acknowledgements

Dataset used for results reported in the paper and model source code for each simulation experiment are deposited at the supercomputer center at Zhejiang University and can be obtained by contacting longcao@zju.edu.cn. This work was supported by the National Key Basic Research Program of China (Grant No. 2015CB953601), the National Natural Science Foundation of China (Grant Nos. 41675063 & 41422503), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Cao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Zhang, H. & Cao, L. Simulated effect of sunshade solar geoengineering on the global carbon cycle. Sci. China Earth Sci. 61, 1306–1315 (2018). https://doi.org/10.1007/s11430-017-9210-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9210-0

Keywords

Navigation