Skip to main content
Log in

Coastal blue carbon: Concept, study method, and the application to ecological restoration

  • Progress
  • Special Topic: Carbon cycling in the China Seas
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Coastal blue carbon refers to the carbon taken from atmospheric CO2; fixed by advanced plants (including salt marsh, mangrove, and seagrass), phytoplankton, macroalgae, and marine calcifiers via the interaction of plants and microbes; and stored in nearshore sediments and soils; as well as the carbon transported from the coast to the ocean and ocean floor. The carbon sequestration capacity per unit area of coastal blue carbon is far greater than that of the terrestrial carbon pool. The mechanisms and controls of the carbon sink from salt marshes, mangroves, seagrasses, the aquaculture of shellfish and macroalgae, and the microbial carbon pump need to be further studied. The methods to quantify coastal blue carbon include carbon flux measurements, carbon pool measurements, manipulative experiments, and modeling. Restoring, conserving, and enhancing blue carbon will increase carbon sinks and produce carbon credits, which could be traded on the carbon market. The need to tackle climate change and implement China’s commitment to cut carbon emissions requires us to improve studies on coastal blue carbon science and policy. The knowledge learned from coastal blue carbon improves the conservation and restoration of salt marshes, mangroves, and seagrasses; enhances the function of the microbial carbon pump; and promotes sustainable aquaculture, such as ocean ranching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed N, Bunting S W, Glaser M, Flaherty M S, Diana J S. 2017. Can greening of aquaculture sequester blue carbon? Ambio, 46: 468–477

    Article  Google Scholar 

  • Armentano T V, Woodwell G M. 1975. Sedimentation rates in a Long Island marsh determined by 210Pb dating. Limnol Oceanogr, 20: 452–456

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw K T, Pilegaard K, Schmid H P, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Amer Meteorol Soc, 82: 2415–2434

    Article  Google Scholar 

  • Brannon E Q, Moseman-Valtierra S M, Rella C W, Martin R M, Chen X, Tang J. 2016. Evaluation of laser-based spectrometers for greenhouse gas flux measurements in coastal marshes. Limnol Oceanogr Methods, 14: 466–476

    Article  Google Scholar 

  • Charles H, Dukes J S. 2009. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Ecol Appl, 19: 1758–1773

    Article  Google Scholar 

  • Chen X C, Dai W Q, Huang C J, Pan L P, Wu W, You W H. 2017. Design of Compound Ecological Purification System for Preserving Water Quality of Shanghai Yingwuzhou Wetland (in Chinese). China Water Waster Water, 33: 66–70

    Google Scholar 

  • Chen X C, Gao R F, Tang J W. 2016. Basic views and technological methods of salt marsh restoration and its progress in implementation (in Chinese). Mar Environ Sci, 3: 1–18

    Google Scholar 

  • Davis J L, Currin C A, O’Brien C, Raffenburg C, Davis A. 2015. Living shorelines: Coastal resilience with a blue carbon benefit. Plos One, 10: e0142595

    Article  Google Scholar 

  • Davidson E A, Savage K, Verchot L V, Navarro R. 2002. Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol, 113: 21–37

    Article  Google Scholar 

  • Deegan L A, Johnson D S, Warren R S, Peterson B J, Fleeger J W, Fagherazzi S, Wollheim W M. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature, 490: 388–392

    Article  Google Scholar 

  • Donato D C, Kauffman J B, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics. Nat Geosci, 4: 293–297

    Article  Google Scholar 

  • Duarte C M, Losada I J, Hendriks I E, Mazarrasa I, Marbà N. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Change, 3: 961–968

    Article  Google Scholar 

  • Field C B, Behrenfeld M J, Randerson J T, Falkowski P. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281: 237–240

    Article  Google Scholar 

  • Gao Y P, Fang J G, Tang W, Zhang J H, Reng L H, Du M R. 2013. Seagrass meadow carbon sink and amplification of the carbon sink for eelgrass bed in Sanggou Bay (in Chinese). Prog Fish Sci, 1: 17–21

    Google Scholar 

  • Guan D M. 2012. Coastal Wetland in China (in Chinese). Beijing: Ocean Press

    Google Scholar 

  • Hendrey G R, Ellsworth D S, Lewin K F, Nagy J N. 1999. A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Glob Change Biol, 5: 293–309

    Article  Google Scholar 

  • Howard J, Sutton-Grier A, Herr D, Kleypas J, Landis E, Mcleod E, Pidgeon E, Simpson S. 2017. Clarifying the role of coastal and marine systems in climate mitigation. Front Ecol Environ, 15: 42–50

    Article  Google Scholar 

  • IPCC. 2013. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press

    Google Scholar 

  • Jardine S L, Siikamäki J V. 2014. A global predictive model of carbon in mangrove soils. Environ Res Lett, 9: 104013

    Article  Google Scholar 

  • Jiao N Z, Luo T W, Zhang Y, Zhang R, Tang K, Chen F, Zeng Y H, Zhang Y Y, Zhao Y L, Zheng Q, Li Y L. 2011. Microbial Carbon Pump in the Ocean-from Microbial Ecological Process to Carbon Cycle Mechanism (in Chinese). J Xiamen Univ-Nat Sci, 50: 387–401

    Google Scholar 

  • Jiao N Z, Robinson C, Azam F, Thomas H, Baltar F, Dang H, Hardman-Mountford N J, Johnson M, Kirchman D L, Koch B P, Legendre L, Li C, Liu J, Luo T, Luo Y W, Mitra A, Romanou A, Tang K, Wang X, Zhang C, Zhang R. 2014. Mechanisms of microbial carbon sequestration in the ocean-future research directions. Biogeosciences, 11: 5285–5306

    Article  Google Scholar 

  • Jiao N Z, Zhang C L, Chen F, Kan J J, Zhang F. 2008. Frontiers and technological advances in microbial processes and carbon cycling in the ocean. In: Mertens L P, ed. Biological Oceanography Research Trends. New York: Nova Science Publishers Inc. 215–266

    Google Scholar 

  • Jiao N Z, Zhang C L, Li C, Wang X Y, Dang H Y, Zeng Q L, Zhang R, Zhang Y, Tang K, Zhang Z L, Xu D P. 2013. Controllingmechanisms and climate effects of microbial carbon pump in the ocean (in Chinese). Sci Sin Terr, 43: 1–18

    Google Scholar 

  • Jin L, Lu C Y, Ye Y, Ye G F. 2013. Carbon Storage and Fixation by Kandelia candel Mangrove in Jiulongjiang Estuary (in Chinese). J Fujian Forest Sci Tech, 4: 7–11

    Google Scholar 

  • Krause-Jensen D, Duarte C M. 2016. Substantial role of macroalgae in marine carbon sequestration. Nat Geosci, 9: 737–742

    Article  Google Scholar 

  • Kroeger K D, Crooks S, Moseman-Valtierra S, Tang J. 2017. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention. Sci Rep, 7: 11914

    Article  Google Scholar 

  • Lechtenfeld O J, Hertkorn N, Shen Y, Witt M, Benner R. 2015. Marine sequestration of carbon in bacterial metabolites. Nat Commun, 6: 6711

    Article  Google Scholar 

  • Legendre L, Rivkin R B, Weinbauer M G, Guidi L, Uitz J. 2015. The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean. Prog Oceanography, 134: 432–450

    Article  Google Scholar 

  • Li S, Fan H Q, Qiu G L, Shi Y J. 2010. Review on research of seagrass beds restoration (in Chinese). Acta Ecol Sin, 30: 2443–2453

    Article  Google Scholar 

  • Li X G, Guo K, Feng X H, Liu X J. 2017. Carbon storage of soil-vegetation system under different land use patterns in saline coastal regions (in Chinese). Chin J Eco-Agricul, 25: 1580–1590

    Google Scholar 

  • Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol, 2: 17105

    Article  Google Scholar 

  • Lin P. 2001. A review on the mangrove research (in Chinese). J Xiamen Univ-Nat Sci, 40: 592–603

  • Livingston G P, Hutchinson G L. 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson P A, Harris R C, eds. Biogenic Trace Gases: Measuring Emissions From Soil and Water. Oxford: Blackwell Science Ltd. 14–51

    Google Scholar 

  • Macreadie P I, Trevathan-Tackett S M, Skilbeck C G, Sanderman J, Curlevski N, Jacobsen G, Seymour J R. 2015. Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. Proc R Soc B, 282: 20151537

    Article  Google Scholar 

  • Marbà N, Duarte C M, Agustí S. 2007. Allometric scaling of plant life history. Proceedings of the National Academy of Sciences of the United States of America, 104: 15777–15780

    Article  Google Scholar 

  • Mcleod E, Chmura G L, Bouillon S, Salm R, Björk M, Duarte C M, Lovelock C E, Schlesinger W H, Silliman B R. 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ, 9: 552–560

    Article  Google Scholar 

  • Melillo J M, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou Y M, Tang J. 2011. Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA, 108: 9508–9512

    Article  Google Scholar 

  • Melillo J M, Steudler P A, Aber J D, Newkirk K, Lux H, Bowles F P, Catricala C, Magill A, Ahrens T, Morrisseau S. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science, 298: 2173–2176

    Article  Google Scholar 

  • Morris J T, Barber D C, Callaway J C, Chambers R, Hagen S C, Hopkinson C S, Johnson B J, Megonigal P, Neubauer S C, Troxler T, Wigand C. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth’s Future, 4: 110–121

    Article  Google Scholar 

  • Nahlik A M, Fennessy M S. 2016. Carbon storage in US wetlands. Nat Commun, 7: 13835

    Article  Google Scholar 

  • Norman J M, Garcia R, Verma S B. 1992. Soil surface CO2 fluxes and the carbon budget of a grassland. J Geophys Res, 97: 18845–18853

    Article  Google Scholar 

  • Nellemann C, Corcoran E, Duarte C M, Valdés L, De Young C, Fonseca L, Grimsditch G. 2009. Blue Carbon: A Rapid Response Assessment. United Nations Environment Programme

  • Osterholz H, Niggemann J, Giebel H A, Simon M, Dittmar T. 2015. Inefficient microbial production of refractory dissolved organic matter in the ocean. Nat Commun, 6: 7422

    Article  Google Scholar 

  • Peng C J, Qian J W, Guo X D, Zhao H W, Hu N X, Yang Q, Chen C P, Chen L Z. 2016. Vegetation carbon stocks and net primary productivity of the mangrove forests in Shenzhen, China (in Chinese). Chin J Appl Ecol, 27: 2059–2065

    Google Scholar 

  • Qiu G L, Lin X Z, Li Z S, Fan H Q, Zhou H L, Liu G H. 2014. Seagrass ecosystems: Contributions to and mechanisms of carbon sequestration (in Chinese). Chin J Appl Ecol, 25:1825–1832

    Google Scholar 

  • Shao X X, Li W H, Wu M, Yang W Y, Jiang K Y, Ye X Q. 2013. Dynamics of carbon, nitrogen and phosphorus storage of three dominant marsh Plants in Hangzhou Bay coastal wetland (in Chinese). Environ Sci, 34: 3451–3457

    Google Scholar 

  • Tang Q S, Liu H. 2016. Strategy for Carbon Sink and Its Amplification in Marine Fisheries (in Chinese). Eng Sci, 18: 68–73

    Article  Google Scholar 

  • Wang S Q, Wang H Q, Fang Y, Li K. 2014. Ability of plant carbon fixation in the coastal wetland of Chongming Island (in Chinese). Chin J Ecol, 33: 915–921

    Google Scholar 

  • Xie L P, Wang M, Wang B D, Shi X Y, Xin M, Wei Q S, He X P, Guo F. 2017. Distribution pattern and influencing factors of vegetation carbon storage of Tamarix chinense in the coastal wetland of Laizhou Bay, China (in Chinese). Chin J Appl Ecol, 28: 1103–1111

    Google Scholar 

  • Zhang H B, Luo Y M, Liu X H, Fu C C. 2015. Current researches and prospects on the coastal blue carbon (in Chinese). Scientia Sinica Terrae, 45: 1641–1648

    Article  Google Scholar 

  • Zhang J H, Fang J G, Tang Q S. 2005. The contribution of shellfish and seaweed mariculture in China to the carbon cycle of coastal ecosystem (in Chinese). Adv Earth Sci, 20: 359–365

    Google Scholar 

  • Zhang L, Guo Z H, Li Z Y. 2013. Carbon storage and carbon sink of mangrove wetland: Research progress (in Chinese). Chin J Appl Ecol, 24: 1153–1159

    Google Scholar 

  • Zhang X L, Zhang C H, Xu Z J, Hou X J, Cai Q F. 2012. On the relation between carbon storage and reinforced fixation of the coastal wetland vegetation in the Yellow River delta area (in Chinese). J Safety Environ, 12: 145–149

    Google Scholar 

  • Zhang Y, Zhao M X, Cui Q, Fan W, Qi J G, Chen Y, Zhang Y Y, Gao K S, Fan J F, Wang G Y, Yan C L, Lu H L, Luo Y W, Zhang Z L, Zheng Q, Xiao W, Jiao N Z. 2017. Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink. Sci China Earth Sci, 60: 809–820

    Article  Google Scholar 

  • Zheng Y M, Niu Z G, Gong P, Dai Y J, ShangGuan W. 2013. Preliminary estimation of the organic carbon pool in China’s wetlands (in Chinese). Chin Sci Bull, 58: 170–180

    Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their valuable comments to improve this paper. Writing of this paper is motivated by the “International forum on Coastal Blue Carbon” held on August 25–27, 2017 in Wenzhou, and “Blue Carbon International Forum” held on November 4, 2017 in Xiamen, where Jianwu Tang made presentations, and benefited from presentations and discussion in these two meetings. This work was supported by the National Natural Science Foundation of China Overseas and Hong Kong-Macao Scholars Collaborative Research Fund (Grant No. 31728003) and the Shanghai University Distinguished Professor (Oriental Scholars) Program (Grant No. JZ2016006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwu Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Ye, S., Chen, X. et al. Coastal blue carbon: Concept, study method, and the application to ecological restoration. Sci. China Earth Sci. 61, 637–646 (2018). https://doi.org/10.1007/s11430-017-9181-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9181-x

Keywords

Navigation