Skip to main content
Log in

Diabetes und Schlafapnoe

Diabetes and sleep apnea

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

„Der Schlaf ist doch die köstlichste Erfindung.“ Heinrich Heine (1797–1856)

Zusammenfassung

Hintergrund

Die obstruktive Schlafapnoe (OSA) stellt eine häufige Komorbidität bei Patienten mit Diabetes mellitus Typ 2 mit gegenseitiger Wechselwirkung dar.

Obstruktive Schlafapnoe und Typ-2-Diabetes

Schlafbezogene Störungen der Atmung können über wiederkehrende nächtliche Sauerstoffentsättigungen, Schlafunterbrechungen, sympathische Nervenaktivierung sowie weitere pathophysiologische Mechanismen zu einer gestörten Glukoseregulation führen. Daher ist bei bestehender OSA auch das Risiko für die Neuentstehung einer diabetischen Stoffwechsellage erhöht.

Therapiemaßnahmen

Obwohl eine unabhängige Assoziation beider Erkrankungen nachgewiesen wurde, fanden sich in Studien widerstreitende Effekte einer nächtlichen Atemwegsüberdrucktherapie auf den Glukosestoffwechsel. Neben einer ausreichenden Adhärenz bezüglich der nächtlichen Maskenbehandlung sollten auch flankierende Maßnahmen im Sinne einer multimodalen Therapie Beachtung finden. Hier könnten telemedizinische Anwendungen zu einer Verbesserung des Patientenmanagements beitragen.

Jüngste Studienresultate

In jüngster Zeit mehren sich Hinweise auf einen Zusammenhang von OSA und Diabetes mellitus Typ 1 bzw. Gestationsdiabetes.

Abstract

Background

Obstructive sleep apnea (OSA) is a frequent comorbidity in patients with type 2 diabetes.

Obstructive sleep apnea and type 2 diabetes

Sleep disordered breathing can lead to a dysregulation of glycemic metabolism via repetitive oxygen desaturations, sleep fragmentation, sympathetic nerve activation and other pathophysiological links. Thus, OSA can increase the risk of incident type 2 diabetes.

Therapeutic measures

Although an independent link between OSA and type 2 diabetes has been shown, there are conflicting data about the effects of continuous positive airway pressure (CPAP) therapy on glucose metabolism in OSA. In addition to sufficient CPAP adherence, other factors should be monitored following a multi-modal treatment strategy. Telemedical solutions could improve patient management. Recent data also show links between OSA and type 1 diabetes and gestational diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. American Diabetes Association (2017) Standards of medical care in diabetes. Diabetes Care 40(Supplement 1):S1–S142

    Article  Google Scholar 

  2. Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A (2016) Sleep disturbances compared to traditional risk factors for diabetes development: systematic review and meta-analysis. Sleep Med Rev 30:11–24

    Article  PubMed  Google Scholar 

  3. Balks HJ, Holst JJ, von zur Mühlen A, Brabant G (1997) Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors. J Clin Endocrinol Metab 82:786–790

    CAS  PubMed  Google Scholar 

  4. Banghoej AM, Nerild HH, Kristensen PL et al (2017) Obstructive sleep apnoea is frequent in patients with type 1 diabetes. J Diabetes Complicat 31:156–161

    Article  PubMed  Google Scholar 

  5. Bloom SR, Edwards AV, Hardy RN (1978) The role of the autonomic nervous system in the control of glucagon, insulin and pancreatic polypeptide release from the pancreas. J Physiol 280:9–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bottini P, Redolfi S, Dottorini ML, Tantucci C (2008) Autonomic neuropathy increases the risk of obstructive sleep apnea in obese diabetics. Respiration 75:265–271

    Article  PubMed  Google Scholar 

  7. Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ (2012) Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann Intern Med 157:549–557

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chirinos JA, Gurubhagavatula I, Teff K et al (2014) CPAP, weight loss, or both for obstructive sleep apnea. N Engl J Med 370:2265–2275

    Article  PubMed  PubMed Central  Google Scholar 

  9. Comondore VR, Cheema R, Fox J et al (2009) The impact of CPAP on cardiovascular biomarkers in minimally symptomatic patients with obstructive sleep apnea: a pilot feasibility randomized crossover trial. Lung 187:17–22

    Article  PubMed  Google Scholar 

  10. Coughlin SR, Mawdsley L, Mugarza JA et al (2007) Cardiovascular and metabolic effects of CPAP in obese males with OSA. Eur Respir J 29:720–727

    Article  CAS  PubMed  Google Scholar 

  11. Diabetes-Ratgeber, https://www.diabetes-ratgeber.net/Schlafstoerungen/Schlafapnoe-58362.html. Zugegriffen: Oktober 2017

  12. Foster GD, Borradaile KE, Sanders MH et al (2009) A randomized study on the effect of weight oss on obstructive sleep apnea among obese patients with type 2 diabetes: the Sleep AHEAD study. Arch Intern Med 169:1619–1626

    Article  PubMed  PubMed Central  Google Scholar 

  13. Greenburg DL, Lettieri CJ, Eliasson AH (2009) Effects of surgical weight loss on measures of obstructive sleep apnea: a meta-analysis. Am J Med 122:535–542

    Article  PubMed  Google Scholar 

  14. Heffner JE, Rozenfeld Y, Kai M, Stephens EA, Brown LK (2012) Prevalence of diagnosed sleep apnea among patients with type 2 diabetes in primary care. Chest 141:1414–1421

    Article  PubMed  Google Scholar 

  15. Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, Mooser V, Preisig M, Malhotra A, Waeber G, Vollenweider P, Tafti M, Haba-Rubio J (2015) Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med 3:310–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoyos CM, Killick R, Yee BJ et al (2012) Cardiometabolic changes after continuous positive airway pressure for obstructive sleep apnoea: a randomised sham-controlled study. Thorax 67:1081– 1089

    Google Scholar 

  17. Iftikhar IH, Donley MA, Mindel J, Pleister A, Soriano S, Magalang UJ (2015) Sleep duration and metabolic syndrome. An updated dose-risk meta analysis. Ann Am Thorac Soc 12:1364–1372

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KS (2002) Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med 165:670–676

    Article  PubMed  Google Scholar 

  19. Kent BD, Grote L, Ryan S, Pépin JL, Bonsignore MR, Tkacova R, Saaresranta T, Verbraecken J, Lévy P, Hedner J, McNicholas WT (2014) Diabetes mellitus prevalence and control in sleep-disordered breathing: the European Sleep Apnea Cohort (ESADA) study. Chest 146:982–990

    Article  PubMed  Google Scholar 

  20. Kohler M, Pepperell JC, Casadei B et al (2008) CPAP and measures of cardiovascular risk in males with OSAS. Eur Respir J 32:1488–1496

    Article  CAS  PubMed  Google Scholar 

  21. Kritikou I, Basta M, Vgontzas AN et al (2014) Sleep apnoea, sleepiness, inflammation and insulin resistance in middle-aged males and females. Eur Respir J 43:145–155

    Article  PubMed  Google Scholar 

  22. Lam JC, Lam B, Yao TJ et al (2010) A randomized controlled trial of nasal continuous positive airway pressure on insulin sensitivity in obstructive sleep apnoea. Eur Respir J 43:145–155

    Google Scholar 

  23. Lam JC, Lam B, Yao TJ et al (2010) A randomised controlled trial of nasal continuous positive airway pressure on insulin sensitivity in obstructive sleep apnoea. Eur Respir J 35:138–145

    Article  CAS  PubMed  Google Scholar 

  24. Louis M, Punjabi NM (2009) Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J Appl Physiol 106:1538–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mahmood K, Akhter N, Eldeirawi K, Onal E, Christman JW, Carley DW, Herdegen JJ (2009) Prevalence of type 2 diabetes in patients with obstructive sleep apnea in a multi-ethnic sample. J Clin Sleep Med 5:215–221

    PubMed  PubMed Central  Google Scholar 

  26. Martinez-Ceron E, Barquiel B, Bezos AM et al (2016) Effect of continuous positive airway pressure on glycemic control in patients with obstructive sleep apnea and type 2 diabetes. A randomized clinical trial. Am J Respir Crit Care Med 194:476–485

    Article  PubMed  Google Scholar 

  27. Mayer G, Arzt M, Braumann B, Ficker JH, Fietze I, Frohnhofen H, Galetke W, Maurer JT, Orth M, Penzel T, Randerath W, Rösslein M, Sitter H, Stuck BA (2017) S3-Leitlinie Nicht erholsamer Schlaf/Schlafstörungen, Sonderheft 2

    Google Scholar 

  28. Mokhlesi B, Grimaldi D, Beccuti G et al (2016) Effect of one week of 8-hour nightly continuous positive airway pressure treatment of obstructive sleep apnea on glycemic control in type 2 diabetes: A proof-of-concept study. Am J Respir Crit Care Med 194:516–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morariu EM, Chasens ER, Strollo PJ Jr et al (2017) Effect of continuous positive airway pressure (CPAP) on glycemic control and variability in type 2 diabetes. Sleep Breath 21:145–147

    Article  PubMed  Google Scholar 

  30. Myhill PC, Davis WA, Peters KE et al (2012) Effect of continuous positive airway pressure therapy on cardiovascular risk factors in patients with type 2 diabetes and obstructive sleep apnea. J Clin Endocrinol Metab 97:4212–4218

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen PK, Katikireddy CK, McConnell MV et al (2010) Nasal continuous positive airway pressure improves myocardial perfusion reserve and endothelial-dependent vasodilation in patients with obstructive sleep apnea. J Cardiovasc Magn Reson 12:50

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nonogaki K (2000) New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43:533–549

    Article  CAS  PubMed  Google Scholar 

  33. Oldenburg O, Arzt M, Bitter T, Bonnemeier H, Edelmann F, Fietze I, Podszus T, Schäfer T, Schöbel C, Skobel E, Skowasch D, Penzel T, Nienaber C (2015) Positionspapier „Schlafmedizin in der Kardiologie“ update 2014. Kardiologe 9:140–158

    Article  Google Scholar 

  34. Pamidi S, Wroblewski K, Stepien M et al (2015) Eight hours of nightly continuous positive airway pressure treatment of obstructive sleep apnea improves glucose metabolism in patients with prediabetes. A randomized controlled trial. Am J Respir Crit Care Med 192:96–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reutrakul S, Mokhlesi B (2017) Obstructive sleep apnea and diabetes: a state of the art review. Chest. https://doi.org/10.1016/j.chest.2017.05.009

    PubMed  Google Scholar 

  36. Reutrakul S, Thakkinstian A, Anothaisintawee T et al (2016) Sleep characteristics in type I diabetes and associations with glycemic control: systematic review and meta-analysis. Sleep Med 23:26–45

    Article  PubMed  Google Scholar 

  37. Reutrakul S, Sumritsopak R, Saetung S, Chanprasertyothin S, Anothaisintawee T (2017) The relationship between sleep and glucagon-like peptide 1 in patients with abnormal glucose tolerance. J Sleep Res. https://doi.org/10.1111/jsr.12552

    Google Scholar 

  38. Salord N, Fortuna AM, Monasterio C et al (2016) A randomized controlled trial of continuous positive airway pressure on glucose tolerance in obese patients with obstructive sleep apnea. Sleep 39:35–41

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sanders MH, Givelber R (2003) Sleep disordered breathing may not be an independent risk factor for diabetes, but diabetes may contribute to the occurrence of periodic breathing in sleep. Sleep Med 2003(4):349–350

    Article  Google Scholar 

  40. Shaw JE, Punjabi NM, Naughton MT et al (2016) The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. Am J Respir Crit Care Med 194:486–492

    Article  CAS  PubMed  Google Scholar 

  41. Sivam S, Phillips CL, Trenell MI et al (2012) Effects of 8 weeks of continuous positive airway pressure on abdominal adiposity in obstructive sleep apnoea. Eur Respir J 40:913–918

    Article  CAS  PubMed  Google Scholar 

  42. Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB, Wadden TA, Kelley D, Wing RR, Sunyer FX, Darcey V, Kuna ST, Sleep AHEAD Research Group (2009) Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care 32:1017–1019

    Article  PubMed  PubMed Central  Google Scholar 

  43. Somers VK, Dyken ME, Clary MP, Abboud FM (1995) Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96:1897–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang N, Khan SA, Prabhakar NR, Nanduri J (2013) Impairment of pancreatic β‑cell function by chronic intermittent hypoxia. Exp Physiol 98:1376–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weinstock TG, Wang X, Rueschman M et al (2012) A controlled trial of CPAP therapy on metabolic control in individuals with impaired glucose tolerance and sleep apnea. Sleep 35:617–625

    Article  PubMed  PubMed Central  Google Scholar 

  46. West SD, Nicoll DJ, Wallace TM et al (2007) Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax 62:969–974

    Article  PubMed  PubMed Central  Google Scholar 

  47. Woehrle H, Ficker JH, Graml A, Fietze I, Young P, Teschler H, Arzt M (2017) Telemedicine-based proactive patient management during positive airway pressure therapy: impact on therapy termination rate. Somnologie (Berl) 21:121–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schöbel.

Ethics declarations

Interessenkonflikt

C. Schöbel gibt folgende mögliche Interessenkonflikte an: Forschungsförderung und Vortragshonorare von ResMed, Philips Respironics, LivaNova, Berlin-Chemie, Novartis. H. Grüger gibt folgende mögliche Interessenkonflikte an: Forschungsförderung und Vortragshonorare von ResMed. G. Schrörs gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schöbel, C., Grüger, H. & Schrörs, G. Diabetes und Schlafapnoe. Diabetologe 14, 18–26 (2018). https://doi.org/10.1007/s11428-018-0303-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-018-0303-5

Schlüsselwörter

Keywords

Navigation