Skip to main content
Log in

Pillararene-based supramolecular systems for theranostics and bioapplications

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

As an emerging type of important macrocycles for supramolecular chemistry, pillararenes and their derivatives have been widely studied and applied in numerous fields, which intensively promotes the development of chemistry, materials science and biology. Pillararene-based theranostic systems are of special interest in the biological and medical areas as they have shown very promising results. Owing to easy preparation, reliable guest affinity, good biocompatibility and stability, pillararenes are frequently used to construct functional biomaterials. On one hand, pillararenes can either be used individually or form diversiform self-assemblies such as micelles, nanoparticles and vesicles to increase water solubility and biocompatibility of drugs. On the other hand, it is promising to modify solid materials like framework materials, silica nanoparticles and graphene oxides with pillararene derivatives to enhance their functions and controllability. In this review, we summarize recent endeavors of pillararene-based supramolecular systems with theranostics and other biological applications comprising drug delivery/chemotherapy, photodynamic/photothermal therapy, antimicrobials, bioimaging, etc. By introducing several typical examples, the design principles, preparation strategies, identifications and bio-applications of these pillararene-based supramolecular systems are described. Future challenges and directions of this field are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou J, Yu G, Huang F. Chem Soc Rev, 2017, 46: 7021–7053

    Article  Google Scholar 

  2. Webber MJ, Langer R. Chem Soc Rev, 2017, 46: 6600–6620

    Article  Google Scholar 

  3. Webber MJ, Appel EA, Meijer EW, Langer R. Nat Mater, 2016, 15: 13–26

    Article  Google Scholar 

  4. Zhu H, Shangguan L, Shi B, Yu G, Huang F. Mater Chem Front, 2018, 2: 2152–2174

    Article  Google Scholar 

  5. Zheng Z, Geng W, Xu Z, Guo D. Isr J Chem, 2019, 59: 913–927

    Article  Google Scholar 

  6. Xue M, Yang Y, Chi X, Zhang Z, Huang F. Acc Chem Res, 2012, 45: 1294–1308

    Article  Google Scholar 

  7. Li Q, Zhu H, Huang F. Trends Chem, 2020, 2: 850–864

    Article  Google Scholar 

  8. Ogoshi T, Kakuta T, Yamagishi T. Angew Chem Int Ed, 2019, 58: 2197–2206

    Article  Google Scholar 

  9. Zhang H, Zhao Y. Chem Eur J, 2013, 19: 16862–16879

    Article  Google Scholar 

  10. Wang Y, Pei Z, Feng W, Pei Y. J Mater Chem B, 2019, 7: 7656–7675

    Article  Google Scholar 

  11. Ogoshi T, Yamagishi T. Eur J Org Chem, 2013, 2013: 2961–2975

    Article  Google Scholar 

  12. Tan LL, Li H, Tao Y, Zhang SXA, Wang B, Yang YW. Adv Mater, 2014, 26: 7027–7031

    Article  Google Scholar 

  13. Jie K, Zhou Y, Li E, Huang F. Acc Chem Res, 2018, 51: 2064–2072

    Article  Google Scholar 

  14. Li Q, Wu Y, Liu Y, Shangguan L, Shi B, Zhu H. Org Lett, 2020, 22: 6662–6666

    Article  Google Scholar 

  15. Zhu H, Li Q, Shi B, Xing H, Sun Y, Lu S, Shangguan L, Li X, Huang F, Stang PJ. J Am Chem Soc, 2020, 142: 17340–17345

    Article  Google Scholar 

  16. Zhu H, Shi B, Gao L, Liu Y, Liu PR, Shangguan L, Mao Z, Huang F. Polym Chem, 2017, 8: 7108–7112

    Article  Google Scholar 

  17. Zhu H, Li Q, Gao Z, Wang H, Shi B, Wu Y, Shangguan L, Hong X, Wang F, Huang F. Angew Chem Int Ed, 2020, 59: 10868–10872

    Article  Google Scholar 

  18. Behera H, Yang L, Hou J. Chin J Chem, 2020, 38: 215–217

    Article  Google Scholar 

  19. Feng W, Jin M, Yang K, Pei Y, Pei Z. Chem Commun, 2018, 54: 13626–13640

    Article  Google Scholar 

  20. Xiao T, Qi L, Zhong W, Lin C, Wang R, Wang L. Mater Chem Front, 2019, 3: 1973–1993

    Article  Google Scholar 

  21. Song N, Lou XY, Ma L, Gao H, Yang YW. Theranostics, 2019, 9: 3075–3093

    Article  Google Scholar 

  22. Joseph R, Kaizerman D, Herzog IM, Hadar M, Feldman M, Fridman M, Cohen Y. Chem Commun, 2016, 52: 10656–10659

    Article  Google Scholar 

  23. Wu D, Li Y, Shen J, Tong Z, Hu Q, Li L, Yu G. Chem Commun, 2018, 54: 8198–8201

    Article  Google Scholar 

  24. Liu Y, Chen X, Ding J, Yu L, Ma D, Ding J. ACS Omega, 2017, 2: 5283–5288

    Article  Google Scholar 

  25. Cragg PJ. Isr J Chem, 2018, 58: 1194–1208

    Article  Google Scholar 

  26. Danylyuk O, Sashuk V. CrystEngComm, 2015, 17: 719–722

    Article  Google Scholar 

  27. Shangguan L, Chen Q, Shi B, Huang F. Chem Commun, 2017, 53: 9749–9752

    Article  Google Scholar 

  28. Barbera L, Franco D, De Plano LM, Gattuso G, Guglielmino SPP, Lentini G, Manganaro N, Marino N, Pappalardo S, Parisi MF, Puntoriero F, Pisagatti I, Notti A. Org Biomol Chem, 2017, 15: 3192–3195

    Article  Google Scholar 

  29. Hao Q, Chen Y, Huang Z, Xu JF, Sun Z, Zhang X. ACS Appl Mater Interfaces, 2018, 10: 5365–5372

    Article  Google Scholar 

  30. Lan S, Liu Y, Shi K, Ma D. ACS Appl Bio Mater, 2020, 3: 2325–2333

    Article  Google Scholar 

  31. Santos ECS, dos Santos TC, Fernandes TS, Jorge FL, Nascimento V, Madriaga VGC, Cordeiro PS, Checca NR, Da Costa NM, Pinto LFR, Ronconi CM. J Mater Chem B, 2020, 8: 703–714

    Article  Google Scholar 

  32. Cui YH, Deng R, Li Z, Du XS, Jia Q, Wang XH, Wang CY, Meguellati K, Yang YW. Mater Chem Front, 2019, 3: 1427–1432

    Article  Google Scholar 

  33. Sun G, He Z, Hao M, Zuo M, Xu Z, Hu XY, Zhu JJ, Wang L. J Mater Chem B, 2019, 7: 3944–3949

    Article  Google Scholar 

  34. Yang K, Chang Y, Wen J, Lu Y, Pei Y, Cao S, Wang F, Pei Z. Chem Mater, 2016, 28: 1990–1993

    Article  Google Scholar 

  35. Fu S, Zhang Y, Guan S, Huang Q, Wang R, Tian R, Zang M, Qiao S, Zhang X, Liu S, Fan X, Li X, Luo Q, Hou C, Xu J, Dong Z, Liu J. ACS Appl Mater Interfaces, 2018, 10: 14281–14286

    Article  Google Scholar 

  36. Wang Y, Jin M, Chen Z, Hu X, Pu L, Pei Z, Pei Y. Chem Commun, 2020, 56: 10642–10645

    Article  Google Scholar 

  37. Hu XY, Gao L, Mosel S, Ehlers M, Zellermann E, Jiang H, Knauer SK, Wang L, Schmuck C. Small, 2018, 14: 1803952

    Article  Google Scholar 

  38. Zuo M, Qian W, Xu Z, Shao W, Hu XY, Zhang D, Jiang J, Sun X, Wang L. Small, 2018, 14: 1801942

    Article  Google Scholar 

  39. Liu Y, Liao Y, Li P, Li ZT, Ma D. ACS Appl Mater Interfaces, 2020, 12: 7974–7983

    Article  Google Scholar 

  40. Huang X, Wu S, Ke X, Li X, Du X. ACS Appl Mater Interfaces, 2017, 9: 19638–19645

    Article  Google Scholar 

  41. Huang X, Du X. ACS Appl Mater Interfaces, 2014, 6: 20430–20436

    Article  Google Scholar 

  42. Sun YL, Yang YW, Chen DX, Wang G, Zhou Y, Wang CY, Stoddart JF. Small, 2013, 9: 3224–3229

    Google Scholar 

  43. Li X, Han J, Wang X, Zhang Y, Jia C, Qin J, Wang C, Wu JR, Fang W, Yang YW. Mater Chem Front, 2019, 3: 103–110

    Article  Google Scholar 

  44. Li X, Han J, Qin J, Sun M, Wu J, Lei L, Li J, Fang L, Yang YW. Chem Commun, 2019, 55: 14099–14102

    Article  Google Scholar 

  45. Tan LL, Li H, Qiu YC, Chen DX, Wang X, Pan RY, Wang Y, Zhang SXA, Wang B, Yang YW. Chem Sci, 2015, 6: 1640–1644

    Article  Google Scholar 

  46. Wu MX, Gao J, Wang F, Yang J, Song N, Jin X, Mi P, Tian J, Luo J, Liang F, Yang YW. Small, 2018, 14: 1704440

    Article  Google Scholar 

  47. Yang K, Zhang Z, Du J, Li W, Pei Z. Chem Commun, 2020, 56: 5865–5876

    Article  Google Scholar 

  48. Fan W, Huang P, Chen X. Chem Soc Rev, 2016, 45: 6488–6519

    Article  Google Scholar 

  49. Rui L, Xue Y, Wang Y, Gao Y, Zhang W. Chem Commun, 2017, 53: 3126–3129

    Article  Google Scholar 

  50. Hu W, Ma H, Hou B, Zhao H, Ji Y, Jiang R, Hu X, Lu X, Zhang L, Tang Y, Fan Q, Huang W. ACS Appl Mater Interfaces, 2016, 8: 12039–12047

    Article  Google Scholar 

  51. Rak J, Pouckova P, Benes J, Vetvicka D. Anticancer Res, 2019, 39: 3323–3339

    Article  Google Scholar 

  52. Wu J, Tian J, Rui L, Zhang W. Chem Commun, 2018, 54: 7629–7632

    Article  Google Scholar 

  53. Zhu H, Wang H, Shi B, Shangguan L, Tong W, Yu G, Mao Z, Huang F. Nat Commun, 2019, 10: 2412

    Article  Google Scholar 

  54. Shao L, Pan Y, Hua B, Xu S, Yu G, Wang M, Liu B, Huang F. Angew Chem Int Ed, 2020, 59: 11779–11783

    Article  Google Scholar 

  55. Liu Y, Bhattarai P, Dai Z, Chen X. Chem Soc Rev, 2019, 48: 2053–2108

    Article  Google Scholar 

  56. Yang J, Dai D, Lou X, Ma L, Wang B, Yang YW. Theranostics, 2020, 10: 615–629

    Article  Google Scholar 

  57. Yang W, Guo W, Le W, Lv G, Zhang F, Shi L, Wang X, Wang J, Wang S, Chang J, Zhang B. ACS Nano, 2016, 10: 10245–10257

    Article  Google Scholar 

  58. Wu MX, Yan HJ, Gao J, Cheng Y, Yang J, Wu JR, Gong BJ, Zhang HY, Yang YW. ACS Appl Mater Interfaces, 2018, 10: 34655–34663

    Article  Google Scholar 

  59. Cheng Y, Zhang S, Kang N, Huang J, Lv X, Wen K, Ye S, Chen Z, Zhou X, Ren L. ACS Appl Mater Interfaces, 2017, 9: 19296–19306

    Article  Google Scholar 

  60. Sun P, Wang X, Wang G, Deng W, Shen Q, Jiang R, Wang W, Fan Q, Huang W. J Mater Chem B, 2018, 6: 3395–3403

    Article  Google Scholar 

  61. Yoon HJ, Lee HS, Lim JY, Park JH. ACS Appl Mater Interfaces, 2017, 9: 5683–5691

    Article  Google Scholar 

  62. Wang Q, Zhang P, Xu J, Xia B, Tian L, Chen J, Li J, Lu F, Shen Q, Lu X, Huang W, Fan Q. ACS Appl Bio Mater, 2018, 1: 70–78

    Article  Google Scholar 

  63. Li QL, Sun Y, Ren L, Wang X, Wang C, Li L, Yang YW, Yu X, Yu J. ACS Appl Mater Interfaces, 2018, 10: 29314–29324

    Article  Google Scholar 

  64. Joseph R, Naugolny A, Feldman M, Herzog IM, Fridman M, Cohen Y. J Am Chem Soc, 2016, 138: 754–757

    Article  Google Scholar 

  65. Zhang M, Zhu PP, Xin P, Si W, Li ZT, Hou JL. Angew Chem Int Ed, 2017, 56: 2999–3003

    Article  Google Scholar 

  66. Gao L, Li M, Ehrmann S, Tu Z, Haag R. Angew Chem Int Ed, 2019, 58: 3645–3649

    Article  Google Scholar 

  67. Barbera L, De Plano LM, Franco D, Gattuso G, Guglielmino SPP, Lando G, Notti A, Parisi MF, Pisagatti I. Chem Commun, 2018, 54: 10203–10206

    Article  Google Scholar 

  68. Yan S, Chen S, Gou X, Yang J, An J, Jin X, Yang Y, Chen L, Gao H. Adv Funct Mater, 2019, 29: 1904683

    Article  Google Scholar 

  69. Wang X, Wu JR, Liang F, Yang YW. Org Lett, 2019, 21: 5215–5218

    Article  Google Scholar 

  70. Zhu H, Liu J, Shi B, Wang H, Mao Z, Shan T, Huang F. Mater Chem Front, 2018, 2: 1475–1480

    Article  Google Scholar 

  71. Li H, Wei R, Yan GH, Sun J, Li C, Wang H, Shi L, Capobianco JA, Sun L. ACS Appl Mater Interfaces, 2018, 10: 4910–4920

    Article  Google Scholar 

  72. Wang X, Yang J, Sun X, Yu H, Yan F, Meguellati K, Cheng Z, Zhang H, Yang YW. Chem Commun, 2018, 54: 12990–12993

    Article  Google Scholar 

  73. Yu G, Yang J, Fu X, Wang Z, Shao L, Mao Z, Liu Y, Yang Z, Zhang F, Fan W, Song J, Zhou Z, Gao C, Huang F, Chen X. Mater Horiz, 2018, 5: 429–435

    Article  Google Scholar 

  74. Yu G, Zhou X, Zhang Z, Han C, Mao Z, Gao C, Huang F. J Am Chem Soc, 2012, 134: 19489–19497

    Article  Google Scholar 

  75. Shangguan L, Shi B, Chen Q, Li Y, Zhu H, Liu Y, Yao H, Huang F. Tetrahedron Lett, 2019, 60: 150949

    Article  Google Scholar 

  76. Zhang X, Xu X, Li S, Li L, Zhang J, Wang R. Theranostics, 2019, 9: 633–645

    Article  Google Scholar 

  77. Li C, Xie Z, Chen Q, Zhang Y, Chu Y, Guo Q, Zhou W, Zhang Y, Liu P, Chen H, Jiang C, Sun K, Sun T. ACS Nano, 2020, 14: 4950–4962

    Article  Google Scholar 

  78. Chang Y, Chen JY, Yang J, Lin T, Zeng L, Xu JF, Hou JL, Zhang X. ACS Appl Mater Interfaces, 2019, 11: 38497–38502

    Article  Google Scholar 

  79. Chen J, Ni H, Meng Z, Wang J, Huang X, Dong Y, Sun C, Zhang Y, Cui L, Li J, Jia X, Meng Q, Li C. Nat Commun, 2019, 10: 3546

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22035006). This publication is based in part upon work supported by the King Abdullah University of Scienceand Technology Office of Sponsored Research (OSR-2019-CRG8-4032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Niveen M. Khashab, Guocan Yu or Feihe Huang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Li, Q., Khalil-Cruz, L.E. et al. Pillararene-based supramolecular systems for theranostics and bioapplications. Sci. China Chem. 64, 688–700 (2021). https://doi.org/10.1007/s11426-020-9932-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9932-9

Keywords

Navigation