Skip to main content
Log in

Mechanistic insights into the novel glucose-sensitive behavior of P(NIPAM-co-2-AAPBA)

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A glucose-sensitive polymer, poly(N-isopropylacrylamide-co-2-acrylamidophenylboronic acid) (P(NIPAM-co-2-AAPBA)), was synthesized by reversible addition fragmentation chain transfer (RAFT) copolymerization. Addition of glucose results in reduced solubility and hence increased turbidity, rather than the normal increase in solubility (decreased turbidity) observed for other PBA-based glucose-sensitive polymers. The novel glucose-sensitive behavior is explained by a new mechanism, in which glucose acts as an additive and depresses the lower critical solution temperature (LCST) of the polymer, instead of increasing solubility by increasing the degree of ionization of the PBA groups. Experimental and theoretic analysis for the influence of glucose on the thermal behavior of P(NIPAM-co-2-AAPBA) reveals that glucose depresses the LCST of P(NIPAM-co-2- AAPBA) copolymers in a two-stage manner, a fast decrease at low glucose concentrations followed by a slow decrease at high glucose concentrations. For low glucose concentrations, the binding of glucose with PBA groups on the polymer chain increases the number of glucose molecules proximal to the polymer which influences the thermal behavior of the polymer, causing a rapid decrease in LCST. Importantly, the transition occurs at a glucose concentration equal to the reciprocal of the binding constant between PBA and glucose, thus providing a novel method to determine the binding constant. Other saccharides, including mannose, galactose and fructose, also depress the LCST of P(NIPAM-co-2-AAPBA) copolymer in the same way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu X, Li Z, Chen XX, Fossey JS, James TD, Jiang YB. Chem Soc Rev, 2013, 42: 8032–8048

    CAS  PubMed  Google Scholar 

  2. Guan Y, Zhang Y. Chem Soc Rev, 2013, 42: 8106–8121

    CAS  PubMed  Google Scholar 

  3. Brooks WLA, Sumerlin BS. Chem Rev, 2016, 116: 1375–1397

    CAS  PubMed  Google Scholar 

  4. Sun X, James TD. Chem Rev, 2015, 115: 8001–8037

    CAS  PubMed  Google Scholar 

  5. Zhang X, Guan Y, Zhang Y. Biomacromolecules, 2012, 13: 92–97

    CAS  PubMed  Google Scholar 

  6. Jia S, Tang Z, Guan Y, Zhang Y. ACS Appl Mater Interfaces, 2018, 10: 14254–14258

    CAS  PubMed  Google Scholar 

  7. Liu Y, Zhang Y, Guan Y. Chem Commun, 2009, 620: 1867–1869

    Google Scholar 

  8. Asher SA, Alexeev VL, Goponenko AV, Sharma AC, Lednev IK, Wilcox CS, Finegold DN. J Am Chem Soc, 2003, 125: 3322–3329

    CAS  PubMed  Google Scholar 

  9. Alexeev VL, Sharma AC, Goponenko AV, Das S, Lednev IK, Wilcox CS, Finegold DN, Asher SA. Anal Chem, 2003, 75: 2316–2323

    CAS  PubMed  Google Scholar 

  10. Xu S, Sedgwick AC, Elfeky SA, Chen W, Jones AS, Williams GT, Jenkins ATA, Bull SD, Fossey JS, James TD. Front Chem Sci Eng, 2019, 6

    Google Scholar 

  11. Zhang X, Guan Y, Zhang Y. J Mater Chem, 2012, 22: 16299–16305

    CAS  Google Scholar 

  12. Liu P, Luo Q, Guan Y, Zhang Y. Polymer, 2010, 51: 2668–2675

    CAS  Google Scholar 

  13. Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y. J Am Chem Soc, 1998, 120: 12694–12695

    CAS  Google Scholar 

  14. Kang SI, Bae YH. J Control Release, 2003, 86: 115–121

    CAS  PubMed  Google Scholar 

  15. Wang X, Li Q, Guan Y, Zhang Y. Mater Today Chem, 2016, 1–2: 7–14

    Google Scholar 

  16. Kim JJ, Park K. J Control Release, 2001, 77: 39–47

    CAS  PubMed  Google Scholar 

  17. Li Q, Guan Y, Zhang Y. Sens Actuat B-Chem, 2018, 272: 243–251

    CAS  Google Scholar 

  18. Kataoka K, Miyazaki H, Okano T, Sakurai Y. Macromolecules, 1994, 27: 1061–1062

    CAS  Google Scholar 

  19. Matsumoto A, Ikeda S, Harada A, Kataoka K. Biomacromolecules, 2003, 4: 1410–1416

    CAS  PubMed  Google Scholar 

  20. Kim KT, Cornelissen JJLM, Nolte RJM, van Hest JCM. J Am Chem Soc, 2009, 131: 13908–13909

    CAS  PubMed  Google Scholar 

  21. Roy D, Cambre JN, Sumerlin BS. Chem Commun, 2009, 55: 2106–2108

    Google Scholar 

  22. Roy D, Cambre JN, Sumerlin BS. Chem Commun, 2008, 34: 2477–2479

    Google Scholar 

  23. Lv J, Wu G, Liu Y, Li C, Huang F, Zhang Y, Liu J, An Y, Ma R, Shi L. Sci China Chem, 2019, 62: 637–648

    CAS  Google Scholar 

  24. Zhao YN, Yuan Q, Li C, Guan Y, Zhang Y. Biomacromolecules, 2015, 16: 2032–2039

    CAS  PubMed  Google Scholar 

  25. Tang Z, Jia S, Yao L, Guan Y, Zhang Y. Langmuir, 2018, 34: 8288–8293

    CAS  PubMed  Google Scholar 

  26. Zhang Y, Liu K, Guan Y, Zhang Y. RSC Adv, 2012, 2: 4768–4776

    CAS  Google Scholar 

  27. Xing S, Guan Y, Zhang Y. Macromolecules, 2011, 44: 4479–4486

    CAS  Google Scholar 

  28. Zhang Y, Guan Y, Zhou S. Biomacromolecules, 2006, 7: 3196–3201

    CAS  PubMed  Google Scholar 

  29. Zhang Y, Guan Y, Zhou S. Biomacromolecules, 2007, 8: 3842–3847

    CAS  PubMed  Google Scholar 

  30. Yang X, Lee MC, Sartain F, Pan X, Lowe CR. Chem Eur J, 2006, 12: 8491–8497

    CAS  PubMed  Google Scholar 

  31. Lai JT, Filla D, Shea R. Macromolecules, 2002, 35: 6754–6756

    CAS  Google Scholar 

  32. Van Durme K, Rahier H, Van Mele B. Macromolecules, 2005, 38: 10155–10163

    Google Scholar 

  33. Inomata H, Goto S, Otake K, Saito S. Langmuir, 1992, 8: 687–690

    CAS  Google Scholar 

  34. Kim YH, Kwon IC, Bae YH, Kim SW. Macromolecules, 1995, 28: 939–944

    CAS  Google Scholar 

  35. Lee SB, Sohn YS, Song SC. Bull Korean Chem Soc, 2003, 24: 901–905

    CAS  Google Scholar 

  36. Shpigelman A, Paz Y, Ramon O, Livney YD. Colloid Polym Sci, 2011, 289: 281–290

    CAS  Google Scholar 

  37. Kawasaki H, Sasaki S, Maeda H, Mihara S, Tokita M, Komai T. J Phys Chem, 1996, 100: 16282–16284

    CAS  Google Scholar 

  38. Xu R, Tian J, Guan Y, Zhang Y. Macromolecules, 2019, 52: 365–375

    CAS  Google Scholar 

  39. Tang Z, Guan Y, Zhang Y. Polym Chem, 2018, 9: 1012–1021

    CAS  Google Scholar 

  40. Tang Z, Weng J, Guan Y, Zhang Y. Macromol Chem Phys, 2017, 218: 1700364

    Google Scholar 

  41. Hofmann C, Schönhoff M. Colloid Polym Sci, 2009, 287: 1369–1376

    CAS  Google Scholar 

  42. Cho EC, Lee J, Cho K. Macromolecules, 2003, 36: 9929–9934

    CAS  Google Scholar 

  43. Otake K, Inomata H, Konno M, Saito S. Macromolecules, 1990, 23: 283–289

    CAS  Google Scholar 

  44. Springsteen G, Wang B. Tetrahedron, 2002, 58: 5291–5300

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51625302, 51873091) and the National Key Research and Development Program of China (2017YFC1103501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Guan, Tony D. James or Yongjun Zhang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Fu, M., Guan, Y. et al. Mechanistic insights into the novel glucose-sensitive behavior of P(NIPAM-co-2-AAPBA). Sci. China Chem. 63, 377–385 (2020). https://doi.org/10.1007/s11426-019-9680-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9680-6

Keywords

Navigation