Skip to main content
Log in

Quantitative analysis of elements (C, N, O, Al, Si and Fe) in polyamide with wavelength dispersive X-ray fluorescence spectrometry

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A wavelength dispersive X-ray fluorescence (WD-XRF) spectrometry combined with calibration curve method was established for simultaneously analyzing low-Z elements (C, N, O) and Al, Si, Fe in polyamide. To investigate the origin of plastic material causing deposition and blocking in instrument engines and pipelines, polyamide 6 (PA 6, an engineering plastic) was chosen as the study object on account of its common use in industry. The sample preparation with pressed powder disk has been developed for determination of six elements in PA 6. Pure Cu metal was used as the matrix and PA 6 was regarded as standard sample for C, N, O elements. PA 6 particles were firstly smashed to uniform powder in liquid nitrogen, and then mixed with inorganic standard powders (Fe2O3, Al2O3, SiO2, and Na2SiO3). The mixture was ground to obtain homogeneous calibration materials for WD-XRF analysis. The quantitative property of the calibration curve method for each element was reliable. The limits of detection (S/N≤3) of C, N, O, Al, Si and Fe using WD-XRF were 249, 120, 101, 6.2, 3.3, and 1.8 μg/g, respectively. To confirm the accuracy of the proposed WD-XRF calibration curve method, inductively coupled plasma optical emission spectroscopy (ICP-OES) detection for Al, Si, Fe and elemental analyzer (EA) analysis for C, N, O were utilized. A good correlation of the WD-XRF results with the measurements of ICP-OES and EA was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borda PP, Legzdins P. Determination of carbon content in carbides by an elemental analyzer. Anal Chem, 1980, 52: 1777–1778

    Article  CAS  Google Scholar 

  2. Dias FDS, Bonsucesso JS, Oliveira LC, dos Santos WNL. Preconcentration and determination of copper in tobacco leaves samples by using a minicolumn of sisal fiber (Agave sisalana) loaded with alizarin fluorine blue by FAAS. Talanta, 2012, 89: 276–279

    Article  CAS  Google Scholar 

  3. Kara D, Fisher A, Hill SJ. Determination of trace heavy metals in soil and sediments by atomic spectrometry following preconcentration with Schiff bases on Amberlite XAD-4. J Hazard Mater, 2009, 165: 1165–1169

    Article  CAS  Google Scholar 

  4. Khajeh M. Application of modified organo-nanoclay as the sorbent for zinc determination by FAAS: An optimization study of an online pre-concentration system. Biol Trace Elem Res, 2012, 145: 118–125

    Article  CAS  Google Scholar 

  5. Gerhardsson L, Akantis A, Lundstrom NG, Nordberg GF, Schutz A, Skerfving S. Lead concentrations in cortical and trabecular bones in deceased smelter workers. J Trace Elem Med Biol, 2005, 19: 209–215

    Article  CAS  Google Scholar 

  6. Todd AC, Parsons PJ, Carroll S, Geraghty C, Khan FA, Tang SD, Moshier EL. Measurements of lead in human tibiae. A comparison between K-shell X-ray fluorescence and electrothermal atomic absorption spectrometry. Phys Med Biol, 2002, 47: 673–687

    Article  CAS  Google Scholar 

  7. Bakircioglu D, Kurtulus YB, Ucar G. Determination of some traces metal levels in cheese samples packaged in plastic and tin containers by ICP-OES after dry, wet and microwave digestion. Food Chem Toxicol, 2011, 49: 202–207

    Article  CAS  Google Scholar 

  8. Bezerra MA, Bruns RE, Ferreira SLC. Statistical design-principal component analysis optimization of a multiple response procedure using cloud point extraction and simultaneous determination of metals by ICP-OES. Anal Chim Acta, 2006, 580: 251–257

    Article  CAS  Google Scholar 

  9. Zhu X, Chang X, Cui Y, Zou X, Yang D, Hu Z. Solid-phase extraction of trace Cu(II) Fe(III) and Zn(II) with silica gel modified with curcumin from biological and natural water samples by ICP-OES. Microchem J, 2007, 86: 189–194

    Article  CAS  Google Scholar 

  10. Bettmer J, Heilmann J, Kutscher DJ, Sanz-Medel A, Heumann KG. Direct μ-flow injection isotope dilution ICP-MS for the determination of heavy metals in oil samples. Anal Bioanal Chem, 2012, 402: 269–275

    Article  CAS  Google Scholar 

  11. Sahan Y, Basoglu F, Gücer S. ICP-MS analysis of a series of metals (namely: Mg, Cr, Co, Ni, Fe,Cu, Zn, Sn, Cd and Pb) in black and green olive samples from Bursa, Turkey. Food Chem, 2007, 105: 395–399

    Article  CAS  Google Scholar 

  12. Boulyga SF, Heilmann J, Prohaska T, Heumann KG. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples. Anal Bioana Chem, 2007, 389: 697–706

    Article  CAS  Google Scholar 

  13. Barthel M, Pedan V, Hahn O, Rothhardt M, Bresch H, Jann O, Seeger S. XRF-analysis of fine and ultrafine particles emitted from laser printing devices. Environ Sci Technol, 2011, 45: 7819–7825

    Article  CAS  Google Scholar 

  14. Canepari S, Perrino C, Astolfi ML, Catrambone M, Perret D. Determination of soluble ions and elements in ambient air suspended particulate matter: Inter-technique comparison of XRF, IC and ICP for sample-by-sample quality control. Talanta, 2009, 77: 1821–1829

    Article  CAS  Google Scholar 

  15. Kemner KM, Kelly SD, Lai BL, Maser J, O’Loughlin EJ, Sholto-Douglas D, Cai ZH, Schneegurt MA, Kulpa Jr. CF, Nealson KH. Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science, 2004, 306: 686–687

    Article  CAS  Google Scholar 

  16. Shalev S, Shilstein SS, Yekutieli Y. XRF study of archaeological and metallurgical material from an ancient copper-smelting site near Ein-Yahav, Israel. Talanta, 2006, 70: 909–913

    Article  CAS  Google Scholar 

  17. Al-Bataina BA, Maslat AO, Al-Kofahil MM. Element analysis and biological studies on ten oriental spices using XRF and Ames test. J Trace Elem Med Biol, 2003, 17: 85–90

    Article  CAS  Google Scholar 

  18. Bukowiecki N, Hill M, Gehrig R, Zwicky CN, Lienemann P, Hegedüs F, Falkenberg G, Weingartner E, Baltensperger U. Trace metals in ambient air: Hourly size-segregated mass concentrations determined by synchrotron-XRF. Environ Sci Technol, 2005, 39: 5754–5762

    Article  CAS  Google Scholar 

  19. Tung JWT. Determination of metal components in marine sediments using energy-dispersive X-ray fluorescence (ED-XRF) spectrometry. Anal Chim, 2004, 94: 837–846

    Article  CAS  Google Scholar 

  20. Sitko R, Zawisza B, Kita A, Plońska M. Stoichiometry determination of (Pb,La)(Zr,Ti)O3-type nano-crystalline ferroelectric ceramics by wavelength-dispersive X-ray fluorescence spectrometry. Anal Bioanal Chem, 2006, 385: 971–974

    Article  CAS  Google Scholar 

  21. Meng F, Zhang H, Yang F, Liu L. Characterization of cake layer in submerged membrane bioreactor. Environ Sci Techno, 2007, 41: 4065–4070

    Article  CAS  Google Scholar 

  22. Osán J, Szalóki I, Ro C-U, Grieken RV. Light element analysis of individual microparticles using thin-window EPMA. Mikrochim Acta, 2000, 132: 349–355

    Article  Google Scholar 

  23. Osán J, Hoog JD, Espen PV, Szalòki I, Ro C-U, Grieken RV. Evaluation of energy-dispersive X-ray spectra of low-Z elements from electron-probe microanalysis of individual particles. X-ray Spectrom, 2001, 30: 419–426

    Article  Google Scholar 

  24. Dukhanin AY, Pavlinsky GV. Effects of selective excitation of X-ray fluorescence of light elements: Fluorine, oxygen, nitrogen and carbon. X-Ray Spectrom, 2006, 35: 137–140

    Article  CAS  Google Scholar 

  25. Pajchel L, Nykiel P, Kolodziejski W. Elemental and structural analysis of silicon forms in herbal drugs using silicon-29 MAS NMR and WD-XRF spectroscopic methods. J Pharm Biomed Anal, 2011, 56: 846–850

    Article  CAS  Google Scholar 

  26. Yellepeddi R, Thomas R. New developments in wavelength dispersive XRF and XRD for the analysis of foodstuffs and pharmaceutical materials. Spectrosc, 2006, 21: 36–41

    CAS  Google Scholar 

  27. Shaltout AA, Welz B, Ibrahim MA. Influence of the grain size on the quality of standardless WD-XRF analysis of river Nile sediments. Microchem J, 2011, 99: 356–363

    Article  CAS  Google Scholar 

  28. Demir F, Şimşek Ö, Budak G, Karabulut A. Effect on particle size to emitted X-Ray intensity in pellet cement sample analyzed with WD-XRF spectrometer. Instrum Sci Technol, 2008, 36: 410–419

    Article  CAS  Google Scholar 

  29. Nakano K, Nakamura T. Preparation of calibrating standards for X-ray fluorescence spectrometry of trace metals in plastics. X-Ray Spectrom, 2003, 32: 452–457

    Article  CAS  Google Scholar 

  30. Shiraiwa T, Fujino N. Theoretical calculation of fluorescent X-ray intensities in fluorescent X-ray spectrochemical analysis. Jpn J App Phys, 1966, 5: 886–899

    Article  CAS  Google Scholar 

  31. Wolff T, Rabin I, Mantouvalou I, Kanngiesser B, Malzer W, Kindzorra E, Hahn O. Provenance studies on Dead Sea scrolls parchment by means of quantitative micro-XRF. Anal Bioanal Chem, 2012, 402: 1493–1503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Fang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, M., Xiang, L., Lin, JM. et al. Quantitative analysis of elements (C, N, O, Al, Si and Fe) in polyamide with wavelength dispersive X-ray fluorescence spectrometry. Sci. China Chem. 56, 1164–1170 (2013). https://doi.org/10.1007/s11426-013-4883-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-013-4883-z

Keywords

Navigation