Skip to main content
Log in

Determination of cyanide in blood by GC–MS using a new high selectivity derivatization reagent 1,2,3,3-tetramethyl-3H-indolium iodide

  • Letter to the Editor
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. World Health Organization (2017) Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum, 4th ed. https://www.who.int/publications/i/item/9789241549950

  2. Seto Y (2002) False cyanide detection. Anal Chem 74:134A–141A. https://doi.org/10.1021/ac021967j (open access article)

    Article  CAS  PubMed  Google Scholar 

  3. Kudo K, Ishida T, Hikiji W, Usumoto T, Umehara T, Nagamatsu K, Tsuji A, Ikeda N (2010) Pattern of poisoning in Japan: selection of drugs and poisons for systematic toxicological analysis. Forensic Toxicol 28:25–32. https://doi.org/10.1007/s11419-009-0088-8

    Article  CAS  Google Scholar 

  4. Fire Smoke Coalition. http://firesmoke.org/. Accessed 4 Aug 2020

  5. McAllister JL, Roby RJ, Levine B, Purser D (2008) Stability of cyanide in cadavers and in postmortem stored tissue specimens: a review. J Anal Toxicol 32:612–620. https://doi.org/10.1093/jat/32.8.612 (open access article)

    Article  CAS  PubMed  Google Scholar 

  6. Dumas P, Gingras G, LeBlanc A (2005) Isotope dilution-mass spectrometry determination of blood cyanide by headspace gas chromatography. J Anal Toxicol 29:71–75. https://doi.org/10.1093/jat/29.1.71 (open access article)

    Article  CAS  PubMed  Google Scholar 

  7. Murphy KE, Schantz MM, Butler TA et al (2006) Determination of cyanide in blood by isotope-dilution gas chromatography-mass spectrometry. Clin Chem 52:458–467. https://doi.org/10.1373/clinchem.2005.061002 (open access article)

    Article  CAS  PubMed  Google Scholar 

  8. Løbger LL, Petersen HW, Andersen JET (2008) Analysis of cyanide in blood by headspace-isotope-dilution-GC-MS. Anal Lett 41:2564–2586. https://doi.org/10.1080/00032710802363248

    Article  CAS  Google Scholar 

  9. Goud DR, Sinha Roy K, Pardasani D, Purohit AK, Tak VK, Dubey DK (2020) Gas chromatography-mass spectrometric identification of cyanide using a nucleophilic substitution based derivatization with: S-phenyl benzenethiosulfonate. Anal Methods 12:5839–5845. https://doi.org/10.1039/d0ay01643h

    Article  CAS  PubMed  Google Scholar 

  10. Kage S, Nagata T, Kudo K (1996) Determination of cyanide and thiocyanate in blood by gas chromatography and gas chromatography-mass spectrometry. J Chromatogr B 675:27–32. https://doi.org/10.1016/0378-4347(95)00344-4

    Article  CAS  Google Scholar 

  11. Miki A, Nishikawa M, Tsuchihashi H (2000) Simultaneous GC-MS determination of azide, cyanide and thiocyanate via phase-transfer-catalyzed pentafluorobenzylation. J Heal Sci 46:81–88. https://doi.org/10.1248/jhs.46.81 (open access article)

    Article  CAS  Google Scholar 

  12. Tsuge K, Seto Y (2002) Simultaneous detection of anionic toxic substances using GC-MS analysis of pentafluorobenzyl derivatives. Japn J Sci Technol Identif 7:19–35. https://doi.org/10.3408/jasti.7.19 (in Japanese with English abstract; open access article)

    Article  Google Scholar 

  13. Kage S, Kudo K, Ikeda N (2012) Determination of inorganic toxic anions in biological samples by gas chromatography/mass spectrometry after derivatization. Japn J Forensic Sci Technol 17:63–74. https://doi.org/10.3408/jafst.17.63 (in Japanese with English abstract; open access article)

    Article  Google Scholar 

  14. Kudo K, Usumoto Y, Sameshima N, Okumura M, Tsuji A, Ikeda N (2018) Reliable determination of cyanide, thiocyanate and azide in human whole blood by GC–MS, and its application in NAGINATA–GC–MS screening. Forensic Toxicol 36:160–169. https://doi.org/10.1007/s11419-017-0397-2

    Article  CAS  Google Scholar 

  15. Liu G, Liu J, Hara K, Wang Y, Yu Y, Gao L, Li L (2009) Rapid determination of cyanide in human plasma and urine by gas chromatography-mass spectrometry with two-step derivatization. J Chromatogr B 877:3054–3058. https://doi.org/10.1016/j.jchromb.2009.07.029

    Article  CAS  Google Scholar 

  16. Kakehashi H, Shima N, Kamata H, Nishioka H, Ishikawa A, Asai R, Nitta A, Wada M, Nakano S, Matsuta S et al (2020) Development of a new method for cyanide determination using dimethoxytriazinyl (DMT) derivatization. Japn J Forensic Sci Technol 25:141–150. https://doi.org/10.3408/jafst.774 (in Japanese with English abstract; open access article)

    Article  Google Scholar 

  17. Yamaguchi A, Miyaguchi H (2021) A screening method for cyanide in blood by dimethoxytriazinyl derivatization-GC/MS. J Chromatogr Sci 59:1–6. https://doi.org/10.1093/chromsci/bmaa081

    Article  CAS  PubMed  Google Scholar 

  18. Madmon M, Shifrovich A, Tamar SY, Weissberg A (2021) Simple and fast determination of free cyanide in drinking water by liquid chromatography electrospray ionization tandem mass spectrometry following “in vial” derivatization. Int J Mass Spectrom 463:116553. https://doi.org/10.1016/j.ijms.2021.116553

    Article  CAS  Google Scholar 

  19. Lacroix C, Saussereau E, Boulanger F, Goullé JP (2011) Online liquid chromatography-tandem mass spectrometry cyanide determination in blood. J Anal Toxicol 35:143–147. https://doi.org/10.1093/anatox/35.3.143 (open access article)

    Article  CAS  PubMed  Google Scholar 

  20. Jackson R, Logue BA (2017) A review of rapid and field-portable analytical techniques for the diagnosis of cyanide exposure. Anal Chim Acta 960:18–39. https://doi.org/10.1016/j.aca.2016.12.039

    Article  CAS  PubMed  Google Scholar 

  21. Morikawa Y, Hirabara M, Nishiwaki K, Suzuki S, Nakanishi I (2021) A novel turn-on fluorescent sensor for cyanide ions based on the charge transfer transition of phenothiazine/indolium compounds. Mater Adv 2:6104–6111. https://doi.org/10.1039/d1ma00608h (open access article)

    Article  CAS  Google Scholar 

  22. Park JH, Manivannan R, Jayasudha P, Son YA (2020) Spontaneous optical response towards cyanide ion in water by a reactive binding site probe. Spectrochim Acta A Mol Biomol Spectrosc 233:118190. https://doi.org/10.1016/j.saa.2020.118190

    Article  CAS  PubMed  Google Scholar 

  23. Maji S, Chowdhury B, Pal S, Ghosh P (2018) An indolium ion functionalized naphthalimide chemodosimeter for detection of cyanide in aqueous medium. Inorganica Chim Acta 483:321–328. https://doi.org/10.1016/j.ica.2018.08.040

    Article  CAS  Google Scholar 

  24. Qu Y, Zhu Y, Wu J, Wu J, Gu Z, Wu Y (2020) Molecular rotor based on dipyridylphenylamine: near-infrared enhancement emission from restriction of molecular rotation and applications in viscometer and bioprobe. Dyes Pigm 172: https://doi.org/10.1016/j.dyepig.2019.107795

    Article  CAS  Google Scholar 

  25. Huang X, Gu X, Zhang G, Zhang D (2012) A highly selective fluorescence turn-on detection of cyanide based on the aggregation of tetraphenylethylene molecules induced by chemical reaction. Chem Commun 48:12195–12197. https://doi.org/10.1039/c2cc37094h

    Article  CAS  Google Scholar 

  26. Cheng S, Pan X, Shi M, Su T, Zhang C, Zhao W, Dong W (2020) A coumarin-connected carboxylic indolinium sensor for cyanide detection in absolute aqueous medium and its application in biological cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 228:117710. https://doi.org/10.1016/j.saa.2019.117710

    Article  CAS  PubMed  Google Scholar 

  27. Deng K, Wang L, Xia Q, Liu R, Qu J (2019) A turn-on fluorescent chemosensor based on aggregation-induced emission for cyanide detection and its bioimaging applications. Sens Actuators B Chem 296:126645. https://doi.org/10.1016/j.snb.2019.126645

    Article  CAS  Google Scholar 

  28. Malkondu S, Erdemir S, Karakurt S (2020) Red and blue emitting fluorescent probe for cyanide and hypochlorite ions: biological sensing and environmental analysis. Dyes Pigm 174:108019. https://doi.org/10.1016/j.dyepig.2019.108019

    Article  CAS  Google Scholar 

  29. Dong ZM, Ren H, Wang JN, Wang Y (2020) A new naphthopyran-based chemodosimeter with aggregation-induced emission: selective dual-channel detection of cyanide ion in aqueous medium and test strips. Microchem J 155:104676. https://doi.org/10.1016/j.microc.2020.104676

    Article  CAS  Google Scholar 

  30. Bhaskar R, Vijayakumar V, Srinivasadesikan V, Lee S-L, Sarveswari S (2020) Rationally designed imidazole derivative as colorimetric and fluorometric sensor for selective, qualitative and quantitative cyanide ion detection in real time samples. Spectrochim Acta A Mol Biomol Spectrosc 234:118212. https://doi.org/10.1016/j.saa.2020.118212

    Article  CAS  PubMed  Google Scholar 

  31. Lindsay AE, Greenbaum AR, O’Hare D (2004) Analytical techniques for cyanide in blood and published blood cyanide concentrations from healthy subjects and fire victims. Anal Chim Acta 511:185–195. https://doi.org/10.1016/j.aca.2004.02.006

    Article  CAS  Google Scholar 

  32. Pharmaceutical Society of Japan (2017) The Standard method of chemical analysis in poisoning 2017. Tokyo Kagaku Doujin, Tokyo (in Japanese)

    Google Scholar 

  33. Ragaitė G, Dagilienė M, Krikštolaitytė S, Martynaitis V, Šačkus A (2016) Synthesis of trifluoromethyl group bearing indoline-based heterocyclic systems and their application for the detection of cyanide. J Fluor Chem 182:34–40. https://doi.org/10.1016/j.jfluchem.2015.11.009

    Article  CAS  Google Scholar 

  34. Tsuge K, Kataoka M, Seto Y (2000) Cyanide and thiocyanate levels in blood and saliva of healthy adult volunteers. J Health Sci 46:343–350. https://doi.org/10.1248/jhs.46.343

    Article  CAS  Google Scholar 

  35. Food and Drug Administration (2018) Bioanalytical method validation guidance for industry. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf. Accessed 20 Nov 2021

  36. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (2006) Toxicology profile for cyanide. https://www.atsdr.cdc.gov/toxprofiles/tp8.pdf. Accessed 20 Nov 2021

  37. Stamyr K, Thelander G, Ernstgård L, Ahlner J, Johanson G (2012) Swedish forensic data 1992–2009 suggest hydrogen cyanide as an important cause of death in fire victims. Inhal Toxicol 24:194–199. https://doi.org/10.3109/08958378.2012.660285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities (S1411037, 2014–2018). We thank Kindai University Joint Research Center for use of facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasuhiro Morikawa or Keiji Nishiwaki.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morikawa, Y., Nishiwaki, K., Suzuki, S. et al. Determination of cyanide in blood by GC–MS using a new high selectivity derivatization reagent 1,2,3,3-tetramethyl-3H-indolium iodide. Forensic Toxicol 40, 393–399 (2022). https://doi.org/10.1007/s11419-021-00610-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-021-00610-w

Navigation