Skip to main content
Log in

Pharmacokinetics, pharmacodynamics, and toxicity of the new psychoactive substance 3,4-dimethylmethcathinone (3,4-DMMC)

  • Minireview
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

To provide a review of the available data on 3,4-dimethylmethcathinone (3,4-DMMC), its physicochemical properties, detection methods, patterns of abuse and prevalence, biological effects, pharmacodynamics, pharmacokinetics, metabolism, and mechanisms of toxicity have been presented and discussed.

Methods

An exhaustive literature search was carried out with PubMed, drug use forums and blogs, and sites from governmental agencies.

Results

3,4-DMMC is a synthetic cathinone that was first detected in Europe in 2010. Its recreational use and trade in retail outlets have been prohibited in several countries, but the drug remains readily available for purchase on the Internet. 3,4-DMMC has been considered a very appealing drug to be used in combination with other abuse substances. The drug combines the features of stimulants and psychoactive phenethylamines, displays high affinity for 5-HT2 and adrenergic receptors, inhibits monoamine transporters, specially serotonin transporter, but does not promote a significant 5-HT efflux. Recently, anecdotal reports on its abuse sprang up, and 3,4-DMMC has been detected in several seized products and in blood and urine of abusers. 3,4-DMMC metabolites in the urine of habitual users showed N-demethylation, β-ketoreduction, hydroxylation, and oxidation as the major reactions involved in its biotransformation.

Conclusions

There is a wide scope to be explored on the effects of 3,4-DMMC. Clinicians and pathologists should be encouraged to report their findings in scientific literature, as this will aid in evaluating potential detrimental effects of the drug in further clinical and forensic investigations. Further studies on pharmacokinetic properties of 3,4-DMMC are also necessary to improve the methods of drug detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from Shima et al. [7] and Tyrkkö et al. [19]

Similar content being viewed by others

References

  1. UNODC (2016) World drug report 2016. United Nations publication, New York

    Google Scholar 

  2. EMCDDA (2017) European drugs report: trends and developments. Publications Office of the European Union, Luxembourg. https://doi.org/10.2810/610791

  3. EMCDDA (2018) European drugs report: trends and developments. Publications Office of the European Union, Luxembourg. https://doi.org/10.2810/800331

  4. Fowble KL, Shepard JRE, Musah RA (2018) Identification and classification of cathinone unknowns by statistical analysis processing of direct analysis in real time-high resolution mass spectrometry-derived "neutral loss" spectra. Talanta 179:546–553. https://doi.org/10.1016/j.talanta.2017.11.020

    Article  CAS  PubMed  Google Scholar 

  5. Richeval C, Wille SMR, Nachon-Phanithavong M, Samyn N, Allorge D, Gaulier JM (2018) New psychoactive substances in oral fluid of French and Belgian drivers in 2016. Int J Drug Policy 57:1–3. https://doi.org/10.1016/j.drugpo.2018.03.013

    Article  PubMed  Google Scholar 

  6. Valente MJ, Guedes de Pinho P, de Lourdes Bastos M, Carvalho F, Carvalho M (2014) Khat and synthetic cathinones: a review. Arch Toxicol 88:15–45. https://doi.org/10.1007/s00204-013-1163-9

    Article  CAS  PubMed  Google Scholar 

  7. Shima N, Katagi M, Kamata H, Matsuta S, Nakanishi K, Zaitsu K, Kamata T, Nishioka H, Miki A, Tatsuno M, Sato T, Tsuchihashi H, Suzuki K (2013) Urinary excretion and metabolism of the newly encountered designer drug 3,4-dimethylmethcathinone in humans. Forensic Toxicol 31:101–112. https://doi.org/10.1007/s11419-012-0172-3

    Article  CAS  Google Scholar 

  8. Zaami S, Giorgetti R, Pichini S, Pantano F, Marinelli E, Busardo FP (2018) Synthetic cathinones related fatalities: an update. Eur Rev Med Pharmacol Sci 22: 268–274. https://doi.org/10.26355/eurrev_201801_14129

  9. EMCDDA-Europol (2010) Annual Report on the implementation of Council Decision 2005/387/JHA. European Monitoring Centre for Drugs and Drug Addiction, Luxembourg. https://www.emcdda.europa.eu/system/files/publications/644/EMCDDA-Europol_Annual_Report_2010A_281336.pdf. Accessed 17 Oct 2018

  10. EMCDDA-Europol (2015) Annual Report on the implementation of Council Decision 2005/387/JHA. European Monitoring Centre for Drugs and Drug Addiction, Luxembourg. https://doi.org/10.2810/932574

  11. Locos O, Reynolds D (2012) The characterization of 3,4-dimethylmethcathinone (3,4-DMMC). J Forensic Sci 57:1303–1306. https://doi.org/10.1111/j.1556-4029.2012.02142.x

    Article  CAS  PubMed  Google Scholar 

  12. Zancajo VM, Brito J, Carrasco MP, Bronze MR, Moreira R, Lopes A (2014) Analytical profiles of "legal highs" containing cathinones available in the area of Lisbon, Portugal. Forensic Sci Int 244:102–110. https://doi.org/10.1016/j.forsciint.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  13. Odoardi S, Romolo FS, Strano-Rossi S (2016) A snapshot on NPS in Italy: distribution of drugs in seized materials analysed in an Italian forensic laboratory in the period 2013–2015. Forensic Sci Int 265:116–120. https://doi.org/10.1016/j.forsciint.2016.01.037

    Article  CAS  PubMed  Google Scholar 

  14. Bluelight (2010) 3,4-DMMC. https://www.bluelight.org/vb/threads/537782-3-4-dmmc. Accessed 18 Dec 2018

  15. Drugs-Forum (2011) 3,4-DMMC (3,4-dimethylmethcathinone) experiences. https://www.drugs-forum.com/threads/3-4-dmmc-3-4-dimethylmethcathinone-experiences.160183/. Accessed 18 Dec 2018

  16. Usui K, Aramaki T, Hashiyada M, Hayashizaki Y, Funayama M (2014) Quantitative analysis of 3,4-dimethylmethcathinone in blood and urine by liquid chromatography-tandem mass spectrometry in a fatal case. Leg Med 16:222–226. https://doi.org/10.1016/j.legalmed.2014.03.008

    Article  CAS  Google Scholar 

  17. Zellner T, Diestelmann M, Paul LD, Pfab R, Eyera F (2017) Acute “bath salts” intoxications: analytical findings and clinical features. In: 37th International congress of the European association of poisons centres and clinical toxicologists (EAPCCT), 16–19 May 2017. Clin Toxicol 55:371–544. https://doi.org/10.1080/15563650.2017.1309792

    Article  Google Scholar 

  18. Grapp M, Sauer C, Vidal C, Muller D (2016) GC-MS analysis of the designer drug alpha-pyrrolidinovalerophenone and its metabolites in urine and blood in an acute poisoning case. Forensic Sci Int 259:e14–e19. https://doi.org/10.1016/j.forsciint.2015.12.020

    Article  CAS  PubMed  Google Scholar 

  19. Tyrkkö E, Pelander A, Ketola RA, Ojanperä I (2013) In silico and in vitro metabolism studies support identification of designer drugs in human urine by liquid chromatography/quadrupole-time-of-flight mass spectrometry. Anal Bioanal Chem 405:6697–6709. https://doi.org/10.1007/s00216-013-7137-1

    Article  CAS  PubMed  Google Scholar 

  20. Valente MJ, Araujo AM, Bastos ML, Fernandes E, Carvalho F, Guedes de Pinho P, Carvalho M (2016) Characterization of hepatotoxicity mechanisms triggered by designer cathinone drugs (beta-keto amphetamines). Toxicol Sci 153:89–102. https://doi.org/10.1093/toxsci/kfw105

    Article  CAS  PubMed  Google Scholar 

  21. Gaspar H, Bronze S, Oliveira C, Victor BL, Machuqueiro M, Pacheco R, Caldeira MJ, Santos S (2018) Proactive response to tackle the threat of emerging drugs: synthesis and toxicity evaluation of new cathinones. Forensic Sci Int 290:146–156. https://doi.org/10.1016/j.forsciint.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  22. Glicksberg L, Kerrigan S (2017) Stability of synthetic cathinones in blood. J Anal Toxicol 41:711–719. https://doi.org/10.1093/jat/bkx071

    Article  CAS  PubMed  Google Scholar 

  23. Couto RAS, Goncalves LM, Carvalho F, Rodrigues JA, Rodrigues CMP, Quinaz MB (2018) The analytical challenge in the determination of cathinones, key-players in the worldwide phenomenon of novel psychoactive substances. Crit Rev Anal Chem 48:372–390. https://doi.org/10.1080/10408347.2018.1439724

    Article  CAS  PubMed  Google Scholar 

  24. Freni F, Bianco S, Vignali C, Groppi A, Moretti M, Osculati AMM, Morini L (2019) A multi-analyte LC-MS/MS method for screening and quantification of 16 synthetic cathinones in hair: application to postmortem cases. Forensic Sci Int 298:115–120. https://doi.org/10.1016/j.forsciint.2019.02.036

    Article  CAS  PubMed  Google Scholar 

  25. Mohr S, Taschwer M, Schmid MG (2012) Chiral separation of cathinone derivatives used as recreational drugs by HPLC-UV using a CHIRALPAK(R) AS-H column as stationary phase. Chirality 24:486–492. https://doi.org/10.1002/chir.22048

    Article  CAS  PubMed  Google Scholar 

  26. Mohr S, Pilaj S, Schmid MG (2012) Chiral separation of cathinone derivatives used as recreational drugs by cyclodextrin-modified capillary electrophoresis. Electrophoresis 33:1624–1630. https://doi.org/10.1002/elps.201100570

    Article  CAS  PubMed  Google Scholar 

  27. Taschwer M, Seidl Y, Mohr S, Schmid MG (2014) Chiral separation of cathinone and amphetamine derivatives by HPLC/UV using sulfated ss-cyclodextrin as chiral mobile phase additive. Chirality 26:411–418. https://doi.org/10.1002/chir.22341

    Article  CAS  PubMed  Google Scholar 

  28. Uralets V, Rana S, Morgan S, Ross W (2014) Testing for designer stimulants: metabolic profiles of 16 synthetic cathinones excreted free in human urine. J Anal Toxicol 38:233–241. https://doi.org/10.1093/jat/bku021

    Article  CAS  PubMed  Google Scholar 

  29. Concheiro M, Castaneto M, Kronstrand R, Huestis MA (2015) Simultaneous determination of 40 novel psychoactive stimulants in urine by liquid chromatography-high resolution mass spectrometry and library matching. J Chromatogr A 1397:32–42. https://doi.org/10.1016/j.chroma.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Molnar B, Fodor B, Csampai A, Hidvegi E, Molnar-Perl I (2016) Structure-related new approach in the gas chromatography/mass spectrometry analysis of cathinone type synthetic drugs. J Chromatogr A 1477:70–75. https://doi.org/10.1016/j.chroma.2016.11.033

    Article  CAS  PubMed  Google Scholar 

  31. Rowe WF, Marginean I, Carnes S, Lurie IS (2017) The role of diode array ultraviolet detection for the identification of synthetic cathinones. Drug Test Anal 9:1512–1521. https://doi.org/10.1002/dta.2163

    Article  CAS  PubMed  Google Scholar 

  32. Boumba VA, Di Rago M, Peka M, Drummer OH, Gerostamoulos D (2017) The analysis of 132 novel psychoactive substances in human hair using a single step extraction by tandem LC/MS. Forensic Sci Int 279:192–202. https://doi.org/10.1016/j.forsciint.2017.08.031

    Article  CAS  PubMed  Google Scholar 

  33. Fontanals N, Marce RM, Borrull F (2017) Solid-phase extraction followed by liquid chromatography-high resolution mass spectrometry to determine synthetic cathinones in different types of environmental water samples. J Chromatogr A 1524:66–73. https://doi.org/10.1016/j.chroma.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  34. Carnes S, O'Brien S, Szewczak A, Tremeau-Cayel L, Rowe WF, McCord B, Lurie IS (2017) Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones. J Sep Sci 40:3545–3556. https://doi.org/10.1002/jssc.201700349

    Article  CAS  PubMed  Google Scholar 

  35. Serpelloni GMT, Locatelli C, Rimondo C, Seri C (2013) Nuove sostanze psicoattive (NSP): schede tecniche relative alle molecole registrate dal Sistema Nazionale di Allerta Precoce 2013. Allegato al PAN-NSP, Rome, pp 359–538

    Google Scholar 

  36. Brunt TM, Atkinson AM, Nefau T, Martinez M, Lahaie E, Malzcewski A, Pazitny M, Belackova V, Brandt SD (2017) Online test purchased new psychoactive substances in 5 different European countries: a snapshot study of chemical composition and price. Int J Drug Policy 44:105–114. https://doi.org/10.1016/j.drugpo.2017.03.006

    Article  PubMed  Google Scholar 

  37. EMCDDA (2015) New psychoactive substances in Europe. An update from the EU Early Warning System. Publications Office of the European Union, Luxembourg.https://doi.org/10.2810/372415

    Book  Google Scholar 

  38. UNODC (2014) World drug report 2014. United Nations publication, New York

    Google Scholar 

  39. r/researchchemicals (2016) 3,4-DMMC experiences? Opinions? https://www.reddit.com/r/researchchemicals/comments/4mpeqa/34dmmc_experiences_opinions/. Accessed 28 Nov 2018

  40. Luethi D, Kolaczynska KE, Docci L, Krahenbuhl S, Hoener MC, Liechti ME (2018) Pharmacological profile of mephedrone analogs and related new psychoactive substances. Neuropharmacology 134(Pt A):4–12. https://doi.org/10.1016/j.neuropharm.2017.07.026

    Article  CAS  PubMed  Google Scholar 

  41. Pedersen AJ, Reitzel LA, Johansen SS, Linnet K (2013) In vitro metabolism studies on mephedrone and analysis of forensic cases. Drug Test Anal 5:430–438. https://doi.org/10.1002/dta.1369

    Article  CAS  PubMed  Google Scholar 

  42. Calinski DM, Kisor DF, Sprague JE (2019) A review of the influence of functional group modifications to the core scaffold of synthetic cathinones on drug pharmacokinetics. Psychopharmacology 236:881–890. https://doi.org/10.1007/s00213-018-4985-6

    Article  CAS  PubMed  Google Scholar 

  43. Diestelmann M, Zangl A, Herrle I, Koch E, Graw M, Paul LD (2018) MDPV in forensic routine cases: psychotic and aggressive behavior in relation to plasma concentrations. Forensic Sci Int 283:72–84. https://doi.org/10.1016/j.forsciint.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  44. Weinstein AM, Rosca P, Fattore L, London ED (2017) Synthetic cathinone and cannabinoid designer drugs pose a major risk for public health. Front Psychiatry 8:156. https://doi.org/10.3389/fpsyt.2017.00156 (open access article)

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coppola M, Mondola R (2012) Synthetic cathinones: chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as "bath salts" or "plant food". Toxicol Lett 211:144–149. https://doi.org/10.1016/j.toxlet.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  46. Geryk R, Kalíková K, Schmid MG, Tesařová E (2016) Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography. Anal Chim Acta 932:98–105. https://doi.org/10.1016/j.aca.2016.04.044

    Article  CAS  PubMed  Google Scholar 

  47. Dickson AJ, Vorce SP, Levine B, Past MR (2010) Multiple-drug toxicity caused by the coadministration of 4-methylmethcathinone (mephedrone) and heroin. J Anal Toxicol 34:162–168. https://doi.org/10.1093/jat/34.3.162

    Article  CAS  PubMed  Google Scholar 

  48. Adamowicz P, Tokarczyk B, Stanaszek R, Slopianka M (2013) Fatal mephedrone intoxication—a case report. J Anal Toxicol 37:37–42. https://doi.org/10.1093/jat/bks085

    Article  CAS  PubMed  Google Scholar 

  49. Maskell PD, De Paoli G, Seneviratne C, Pounder DJ (2011) Mephedrone (4-methylmethcathinone)-related deaths. J Anal Toxicol 35:188–191. https://doi.org/10.1093/anatox/35.3.188

    Article  CAS  PubMed  Google Scholar 

  50. Torrance H, Cooper G (2010) The detection of mephedrone (4-methylmethcathinone) in 4 fatalities in Scotland. Forensic Sci Int 202:e62–e63. https://doi.org/10.1016/j.forsciint.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  51. Kesha K, Boggs CL, Ripple MG, Allan CH, Levine B, Jufer-Phipps R, Doyon S, Chi P, Fowler DR (2013) Methylenedioxypyrovalerone ("bath salts"), related death: case report and review of the literature. J Forensic Sci 58:1654–1659. https://doi.org/10.1111/1556-4029.12202

    Article  CAS  PubMed  Google Scholar 

  52. Wyman JF, Lavins ES, Engelhart D, Armstrong EJ, Snell KD, Boggs PD, Taylor SM, Norris RN, Miller FP (2013) Postmortem tissue distribution of MDPV following lethal intoxication by "bath salts". J Anal Toxicol 37:182–185. https://doi.org/10.1093/jat/bkt001

    Article  CAS  PubMed  Google Scholar 

  53. Murray BL, Murphy CM, Beuhler MC (2012) Death following recreational use of designer drug "bath salts" containing 3,4-methylenedioxypyrovalerone (MDPV). J Med Toxicol 8:69–75. https://doi.org/10.1007/s13181-011-0196-9

    Article  PubMed  PubMed Central  Google Scholar 

  54. Borek HA, Holstege CP (2012) Hyperthermia and multiorgan failure after abuse of "bath salts" containing 3,4-methylenedioxypyrovalerone. Ann Emerg Med 60:103–105. https://doi.org/10.1016/j.annemergmed.2012.01.005

    Article  PubMed  Google Scholar 

  55. Cawrse BM, Levine B, Jufer RA, Fowler DR, Vorce SP, Dickson AJ, Holler JM (2012) Distribution of methylone in four postmortem cases. J Anal Toxicol 36:434–439. https://doi.org/10.1093/jat/bks046

    Article  CAS  PubMed  Google Scholar 

  56. Carbone PN, Carbone DL, Carstairs SD, Luzi SA (2013) Sudden cardiac death associated with methylone use. Am J Forensic Med Pathol 34:26–28. https://doi.org/10.1097/PAF.0b013e31827ab5da

    Article  PubMed  Google Scholar 

  57. Barrios L, Grison-Hernando H, Boels D, Bouquie R, Monteil-Ganiere C, Clement R (2016) Death following ingestion of methylone. Int J Legal Med 130:381–385. https://doi.org/10.1007/s00414-015-1212-4

    Article  CAS  PubMed  Google Scholar 

  58. Pearson JM, Hargraves TL, Hair LS, Massucci CJ, Frazee CC3rd, Garg U, Pietak BR, (2012) Three fatal intoxications due to methylone. J Anal Toxicol 36:444–451. https://doi.org/10.1093/jat/bks043

    Article  CAS  PubMed  Google Scholar 

  59. de Roux SJ, Dunn WA (2017) "Bath salts" the New York City medical examiner experience: a 3-year retrospective review. J Forensic Sci 62:695–699. https://doi.org/10.1111/1556-4029.13316

    Article  CAS  Google Scholar 

  60. Lee D, Chronister CW, Hoyer J, Goldberger BA (2015) Ethylone-related deaths: toxicological findings. J Anal Toxicol 39:567–571. https://doi.org/10.1093/jat/bkv053

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work received financial support from European Union funds [Fundo Europeu de Desenvolvimento Regional (FEDER)] under the program PT2020 (UID/MULTI/013788/2013) and COMPETE 2020—Operational Program for Competitiveness and Internationalization (POCI), and National funds [Fundação para a Ciência e Tecnologia and Ministério da Educação e Ciência (FCT/MEC)] through the framework of the project POCI-01-0145-FEDER-029584. To all financing sources, the authors are greatly indebted.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela Rouxinol or Diana Dias da Silva.

Ethics declarations

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest to disclose.

Ethical approval

No ethical approval was required for the preparation of this minireview article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouxinol, D., Carmo, H., Carvalho, F. et al. Pharmacokinetics, pharmacodynamics, and toxicity of the new psychoactive substance 3,4-dimethylmethcathinone (3,4-DMMC). Forensic Toxicol 38, 15–29 (2020). https://doi.org/10.1007/s11419-019-00494-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-019-00494-x

Keywords

Navigation