Skip to main content
Log in

Two new-type cannabimimetic quinolinyl carboxylates, QUPIC and QUCHIC, two new cannabimimetic carboxamide derivatives, ADB-FUBINACA and ADBICA, and five synthetic cannabinoids detected with a thiophene derivative α-PVT and an opioid receptor agonist AH-7921 identified in illegal products

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

We identified two new-type cannabimimetic quinolinyl carboxylates, quinolin-8-yl 1-pentyl-(1H-indole)-3-carboxylate (QUPIC, 1) and quinolin-8-yl 1-(cyclohexylmethyl)-1H-indole-3-carboxylate (QUCHIC, 2); and two new cannabimimetic carboxamide derivatives, N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (ADB-FUBINACA, 3) and N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-pentyl-1H-indole-3-carboxamide (ADBICA, 4), as designer drugs in illegal products. Compound 3 was reported to have a potent affinity for cannabinoid CB1 receptor by Pfizer in 2009, but this is the first report of its detection in illegal products. No chemical or pharmacological data for compounds 1, 2, and 4 have appeared until now, making this the first report on these compounds. We also detected synthetic cannabinoids, APICA N-(5-fluoropentyl) analog (5), APINACA N-(5-fluoropentyl) analog (6), UR-144 N-(5-chloropentyl) analog (7), JWH-122 N-(5-chloropentyl) analog (8), and AM-2201 4-methoxynaphthyl analog (4-MeO-AM-2201, 9) herein as newly distributed designer drugs in Japan. It is of interest that compounds 1 and 2 were detected with their synthetic component, 8-quinolinol (10). A stimulant thiophene analog, α-pyrrolidinovalerothiophenone (α-PVT, 11), and an opioid receptor agonist, 3,4-dichloro-N-([1-(dimethylamino)cyclohexyl]methyl)benzamide (AH-7921, 12), were also detected as new types of designer drugs coexisting with several synthetic cannabinoids and cathinone derivatives in illegal products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2011) Identification and quantitation of two cannabimimetic phenylacetylindoles JWH-251 and JWH-250, and four cannabimimetic naphthoylindoles JWH-081, JWH-015, JWH-200, and JWH-073 as designer drugs in illegal products. Forensic Toxicol 29:25–37

    Article  CAS  Google Scholar 

  2. Namera A, Nakamoto A, Saito T, Nagao M (2011) Colorimetric detection and chromatographic analyses of designer drugs in biological materials: a comprehensive review. Forensic Toxicol 29:1–24

    Article  CAS  Google Scholar 

  3. Zaitsu K, Katagi M, Tatsuno M, Sato T, Tsuchihashi H, Suzuki K (2011) Recently abused β-keto derivatives of 3,4-methylenedioxyphenylalkylamines: a review of their metabolisms and toxicological analysis. Forensic Toxicol 29:73–84

    Article  CAS  Google Scholar 

  4. Nakajima J, Takahashi M, Seto T, Yoshida M, Kanai C, Suzuki J, Hamano T (2012) Identification and quantitation of two new naphthoylindole drugs-of-abuse, (1-(5-hydroxypentyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone (AM-2202) and (1-(4-pentenyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone, with other synthetic cannabinoids in unregulated “herbal” products circulated in the Tokyo area. Forensic Toxicol 30:33–44

    Article  CAS  Google Scholar 

  5. Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in illegal products. Forensic Toxicol 30:114–125

    Article  CAS  Google Scholar 

  6. Kneisel S, Bisel P, Brecht V, Broecker S, Müller M, Auwärter V (2012) Identification of the cannabimimetic AM-1220 and its azepane isomer (N-methylazepan-3-yl)-3-(1-naphthoyl)indole in a research chemical and several herbal mixtures. Forensic Toxicol 30:126–134

    Article  CAS  Google Scholar 

  7. Kikura-Hanajiri R, Uchiyama N, Kawamura M, Goda Y (2013) Changes in the prevalence of synthetic cannabinoids and cathinone derivatives in Japan. Forensic Toxicol 31:44–53

    Article  Google Scholar 

  8. Kikura-Hanajiri R, Uchiyama N, Kawamura M, Ogata J, Goda Y (2013) Prevalence of new designer drugs and their legal status in Japan (in Japanese with English abstract). Yakugaku Zasshi 133:31–40

    Article  PubMed  CAS  Google Scholar 

  9. EMCDDA (2012) EMCDDA–Europol 2011 annual report on the implementation of council decision 2005/387/JHA. EMCDDA/Europol, Lisbon. http://www.emcdda.europa.eu/attachements.cfm/att_155113_EN_EMCDDA-Europol%20Annual%20Report%202011_2012_final.pdf. Accessed April 2012

  10. EMCDDA (2012) 2012 Annual report on the state of the drugs problem in Europe. EMCDDA, Lisbon. http://www.emcdda.europa.eu/attachements.cfm/att_190854_EN_TDAC12001ENC_.pdf. Accessed November 2012

  11. Uchiyama N, Kawamura M, Kikura-Hanajiri R, Goda Y (2012) URB-754: a new class of designer drug and 12 synthetic cannabinoids detected in illegal products. Forensic Sci Int. doi:10.1016/j.forsciint.2012.08.047

    Google Scholar 

  12. Manera C, Cascio MG, Benetti V, Allarà M, Tuccinardi T, Martinelli A, Saccomanni G, Vivoli E, Ghelardini C, Di Marzo V, Ferrarini PL (2007) New 1,8-naphthyridine and quinoline derivatives as CB2 selective agonists. Bioorg Med Chem Lett 17:6505–6510

    Article  PubMed  CAS  Google Scholar 

  13. Westphal F, Junge T, Girreser U, Greibl W, Doering C (2012) Mass, NMR and IR spectroscopic characterization of pentedrone and pentylone and identification of their isocathinone by-products. Forensic Sci Int 217:157–167

    Article  PubMed  CAS  Google Scholar 

  14. Lancelot JC, Robba M, Bonnet JJ, Vaugeois JM, Costentin J (1992) Synthesis and preliminary study of the activity of thiophene analogs of pyrovalerone on the neuronal uptake of the monoamines. Eur J Med Chem 27:297–300

    Article  CAS  Google Scholar 

  15. Uchiyama N, Matsuda S, Wakana D, Kikura-Hanajiri R, Goda Y (2013) New cannabimimetic indazole derivatives, N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA) and N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA), identified as designer drugs. Forensic Toxicol 31:93–100

    Article  CAS  Google Scholar 

  16. Buchler IP, Hayes MJ, Hegde SG, Hockerman SL, Jones DE, Kortum SW, Rico JG, Tenbrink RE, Wu KK (2009) Indazole derivatives as CB1 receptor modulators and their preparation and use in the treatment of CB1-mediated diseases. Patent: WO/2009/106982 September, 2009

  17. Aung MM, Griffin G, Huffman JW, Wu M, Keel C, Yang B, Showalter VM, Abood ME, Martin BR (2000) Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB1 and CB2 receptor binding. Drug Alcohol Depend 60:133–140

    Article  PubMed  CAS  Google Scholar 

  18. Uchiyama N, Kikura-Hanajiri R, Kawahara N, Goda Y (2009) Identification of a cannabimimetic indole as a designer drug in a herbal product. Forensic Toxicol 27:61–66

    Article  CAS  Google Scholar 

  19. Ernst L, Schiebel HM, Theuring C, Lindigkeit R, Beuerle T (2011) Identification and characterization of JWH-122 used as new ingredient in “Spice-like” herbal incenses. Forensic Sci Int 208:e31–e35

    Article  PubMed  CAS  Google Scholar 

  20. Frost JM, Dart MJ, Tietje KR, Garrison TR, Grayson GK, Daza AV, El-Kouhen OF, Yao BB, Hsieh GC, Pai M, Zhu CZ, Chandran P, Meyer MD (2010) Indol-3-ylcycloalkyl ketones: effects of N1 substituted indole side chain variations on CB2 cannabinoid receptor activity. J Med Chem 53:295–315

    Article  PubMed  CAS  Google Scholar 

  21. Brittain RT, Kellett DN, Neat ML, Stables R (1973) Proceedings: anti-nociceptive effects in N-substituted cyclohexylmethylbenzamides. Br J Pharmacol 49:158P–159P

    PubMed  CAS  Google Scholar 

  22. Hayes AG, Tyers MB (1983) Determination of receptors that mediate opiate side effects in the mouse. Br J Pharmacol 79:731–736

    Article  PubMed  CAS  Google Scholar 

  23. Uchiyama N, Kikura-Hanajiri R, Goda Y (2011) Identification of a novel cannabimimetic phenylacetylindole, cannabipiperidiethanone, as a designer drug in a herbal product and its affinity for cannabinoid CB1 and CB2 receptors. Chem Pharm Bull 59:1203–1205

    Article  PubMed  CAS  Google Scholar 

  24. EMCDDA (2011) EMCDDA—Europol 2010 annual report on the implementation of council decision 2005/387/JHA. EMCDDA-Europol, Lisbon. http://www.emcdda.europa.eu/attachements.cfm/att_132857_EN_EMCDDA-Europol%20Annual%20Report%202010A.pdf. Accessed April 2012

  25. Zuba D, Sekuła K, Buczek A (2012) 25C-NBOMe—new potent hallucinogenic substance identified on the drug market. Forensic Sci Int. doi:10.1016/j.forsciint.2012.08.027

    Google Scholar 

  26. Zuba D, Sekuła K (2012) Analytical characterization of three hallucinogenic N-(2-methoxy)benzyl derivatives of the 2C-series of phenethylamine drugs. Drug Test Anal. doi:10.1002/dta.1397

    Google Scholar 

Download references

Acknowledgments

Part of this work was supported by a Health and Labour Sciences Research Grant from the Ministry of Health, Labour, and Welfare, Japan.

Conflict of interest

There are no financial or other relations that could lead to a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Goda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 137 kb)

Supplementary material 2 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchiyama, N., Matsuda, S., Kawamura, M. et al. Two new-type cannabimimetic quinolinyl carboxylates, QUPIC and QUCHIC, two new cannabimimetic carboxamide derivatives, ADB-FUBINACA and ADBICA, and five synthetic cannabinoids detected with a thiophene derivative α-PVT and an opioid receptor agonist AH-7921 identified in illegal products. Forensic Toxicol 31, 223–240 (2013). https://doi.org/10.1007/s11419-013-0182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-013-0182-9

Keywords

Navigation