Skip to main content

Advertisement

Log in

An anti-mycobacterial bisfunctionalized sphingolipid and new bromopyrrole alkaloid from the Indonesian marine sponge Agelas sp.

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

In the course of our studies on anti-mycobacterial substances from marine organisms, the known dimeric sphingolipid, leucettamol A (1), was isolated as an active component, together with the new bromopyrrole alkaloid, 5-bromophakelline (2), and twelve known congeners from the Indonesian marine sponge Agelas sp. The structure of 2 was elucidated based on its spectroscopic data. Compound 1 and its bis TFA salt showed inhibition zones of 12 and 7 mm against Mycobacterium smegmatis at 50 μg/disk, respectively, while the N,N’-diacetyl derivative (1a) was not active at 50 μg/disk. Therefore, free amino groups are important for anti-mycobacterial activity. This is the first study to show the anti-mycobacterial activity of a bisfunctionalized sphingolipid. Compound 13 exhibited weak PTP1B inhibitory activity (29% inhibition at 35 μM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33:382–431 and previous reports in this series

    Article  CAS  PubMed  Google Scholar 

  2. Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48 and previous reports in this series

    CAS  PubMed  Google Scholar 

  3. Skropeta D, Wei L (2014) Recent advances in deep-sea natural products. Nat Prod Rep 31:999–1025

    Article  CAS  PubMed  Google Scholar 

  4. Mehbub MF, Lei J, Franco C, Zhang W (2014) Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Mar Drugs 12:4539–4577

    Article  PubMed  PubMed Central  Google Scholar 

  5. Newman DJ, Cragg GM (2014) Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar Drugs 12:255–278

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bu YY, Yamazaki H, Ukai K, Namikoshi M (2014) Anti-mycobacterial nucleoside antibiotics from a marine-derived Streptomyces sp. TPU1236A. Mar Drugs 12:6102–6112

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abdjul DB, Yamazaki H, Kanno SI, Takahashi O, Kirikoshi R, Ukai K, Namikoshi M (2015) Structures and biological evaluations of agelasines isolated from the Okinawan marine sponge Agelas nakamurai. J Nat Prod 78:1428–1433

    Article  CAS  PubMed  Google Scholar 

  8. Abdjul DB, Yamazaki H, Kanno SI, Takahashi O, Kirikoshi R, Ukai K, Namikoshi M (2016) Haliclonadiamine derivatives and 6-epi-monanchorin from the marine sponge Halichondria panicea collected at Iriomote Island. J Nat Prod 79:1149–1154

    Article  CAS  PubMed  Google Scholar 

  9. Kong F, Faulkner DJ (1993) Leucettamines A and B, two antimicrobial lipids from the calcareous sponge Leucetta microraphis. J Org Chem 58:970–971

    Article  CAS  Google Scholar 

  10. Dalisay DS, Tsukamoto S, Molinski TF (2009) Absolute configuration of the α, ω-bifunctionalized sphingolipid leucettamol A from Leucetta microrhaphis by deconvoluted exciton coupled CD. J Nat Prod 72:353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma G, Magdoff-Fairchild B (1977) Natural products of marine sponges. 7. The constitution of weakly basic guanidine compounds, dibromophakellin and monobromophakellin. J Org Chem 42:4118–4124

    Article  CAS  Google Scholar 

  12. Wang S, Romo D (2008) Enantioselective synthesis of (+)-monobromophakellin and (+)-phakellin: a concise phakellin annulation strategy applicable to Palau’amine. Angew Chem Int Ed Engl 47:1284–1286

    Article  CAS  PubMed  Google Scholar 

  13. Fedoreyev SA, Utkina NK, Ilyin SG, Reshetnyak MV, Maximov OB (1986) The structure of dibromoisophakellin from the marine sponge Acanthella carteri. Tetrahedron Lett 27:3177–3180

    Article  Google Scholar 

  14. Wiese KJ, Yakushijin K, Horne DA (2002) Synthesis of dibromophakellstatin and dibromoisophakellin. Tetrahedron Lett 43:5135–5136

    Article  CAS  Google Scholar 

  15. Kuramoto M, Miyake N, Ishimaru Y, Ono N, Uno H (2008) Cylindradines A and B: novel bromopyrrole alkaloids from the marine sponge Axinella cylindratus. Org Lett 10:5465–5468

    Article  CAS  PubMed  Google Scholar 

  16. Cafieri F, Fattorusso E, Taglialatela-Scafati O (1998) Novel bromopyrrole alkaloids from the sponge Agelas dispar. J Nat Prod 61:122–125

    Article  CAS  PubMed  Google Scholar 

  17. Umeyama A, Ito S, Yuasa E, Arihara S, Yamada T (1998) A new bromopyrrole alkaloid and the optical resolution of the racemate from the marine sponge Homaxinella sp. J Nat Prod 61:1433–1434

    Article  CAS  PubMed  Google Scholar 

  18. Fattorusso E, Taglialatela-Scafati O (2000) Two novel pyrrole-imidazole alkaloids from the Mediterranean sponge Agelas oroides. Tetrahedron Lett 41:9917–9922

    Article  CAS  Google Scholar 

  19. Forenza S, Minale L, Riccio R, Fattorusso EJ (1971) New bromo-pyrrole derivatives from the sponge Agelas oroides. J Chem Soc D Chem Commun 18:1129–1130

    Article  Google Scholar 

  20. Tasdemir D, Topaloglu B, Perozzo R, Brun R, O’Neill R, Carballeira NM, Zhang X, Tonge PJ, Linden A, Rüedi P (2007) Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorg Med Chem 15:6834–6845

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura H, Ohizumi Y, Kobayashi JI, Hirata Y (1984) Keramadine, a novel antagonist of serotonergic receptors isolated from the Okinawan sea sponge Agelas sp. Tetrahedron Lett 25:2475–2478

    Article  CAS  Google Scholar 

  22. Wischang D, Hartung J (2011) Parameters for bromination of pyrroles in bromoperoxidase-catalyzed oxidations. Tetrahedron 67:4048–4054

    Article  CAS  Google Scholar 

  23. Ericsson BH (1960) The paper disc method for determination of bacterial sensitivity to antibiotics. Studies on the accuracy of the technique. Scand J Clin Lab Invest 12:408–413

    Article  CAS  PubMed  Google Scholar 

  24. Tsukamoto S, Takeuchi T, Rotinsulu H, Mangindaan REP, van Soest RW, Ukai K, Kobayashi H, Namikoshi M, Ohta T, Yokosawa H (2008) Leucettamol A: a new inhibitor of Ubc13-Uev1A interaction isolated from a marine sponge, Leucetta aff. microrhaphis. Bioorg Med Chem Lett 18:6319–6320

    Article  CAS  PubMed  Google Scholar 

  25. Chianese G, Fattorusso E, Putra MY, Calcinai B, Bavestrello G, Moriello AS, De Petrocellis L, Di Marzo V, Taglialatela-Scafati O (2012) Leucettamols, bifunctionalized marine sphingoids, act as modulators of TRPA1 and TRPM8 channels. Mar Drugs 10:2435–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamazaki H, Sumilat DA, Kanno SI, Ukai K, Rotinsulu H, Wewengkang DS, Ishikawa M, Mangindaan REP, Namikoshi M (2013) A polybromodiphenyl ether from an Indonesian marine sponge Lamellodysidea herbacea and its chemical derivatives inhibit protein tyrosine phosphatase 1B, an important target for diabetes treatment. J Nat Med 67:730–735

    Article  CAS  PubMed  Google Scholar 

  27. Zhang YN, Zhang W, Hong D, Shi L, Shen Q, Li JY, Li J, Hu LH (2008) Oleanolic acid and its derivatives: new inhibitor of protein tyrosine phosphatase 1B with cellular activities. Bioorg Med Chem 16:8697–8705

    Article  CAS  PubMed  Google Scholar 

  28. Zhang S, Zhang ZY (2007) PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today 12:373–381

    Article  CAS  PubMed  Google Scholar 

  29. Barr AJ (2010) Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Med Chem 2:1563–1576

    Article  CAS  PubMed  Google Scholar 

  30. Zhang ZY, Dodd GT, Tiganis T (2015) Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling. Trends Pharmacol Sci 36:661–674

    Article  CAS  PubMed  Google Scholar 

  31. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152

    Article  CAS  PubMed  Google Scholar 

  32. Abdjul DB, Kanno SI, Yamazaki H, Ukai K, Namikoshi M (2016) A dimeric urea of the bisabolene sesquiterpene from the Okinawan marine sponge Axinyssa sp. inhibits protein tyrosine phosphatase 1B activity in Huh-7 human hepatoma cells. Bioorg Med Chem Lett 26:315–317

    Article  CAS  PubMed  Google Scholar 

  33. Cui L, Na MK, Oh H, Bae EY, Jeong DG, Ryu SE, Kim S, Kim BY, Oh WK, Ahn JS (2006) Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorg Med Chem Lett 16:1426–1429

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Kanae Foundation for the Promotion of Medical Science to H. Y. and the Grant for Basic Science Research Projects from The Sumitomo Foundation to H. Y. We express our thanks to Dr. K. Ogawa of the Z. Nakai Laboratory for the identification of the marine sponge and to Mr. T. Matsuki and S. Sato for the measurements of mass spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Yamazaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdjul, D.B., Yamazaki, H., Kanno, Si. et al. An anti-mycobacterial bisfunctionalized sphingolipid and new bromopyrrole alkaloid from the Indonesian marine sponge Agelas sp.. J Nat Med 71, 531–536 (2017). https://doi.org/10.1007/s11418-017-1085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-017-1085-6

Keywords

Navigation