Skip to main content
Log in

p-Hydroxyacetophenone suppresses nuclear factor-κB-related inflammation in nociceptive and inflammatory animal models

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

p-Hydroxyacetophenone (HAP) is a crucial chemical compound present in plants of the genus Artemisia, which are used in traditional therapies for treating jaundice, hepatitis, and inflammatory diseases. Nevertheless, the bioactivity of HAP remains to be identified in order to prove its importance in the plants of genus Artemisia. This study investigated the antioxidative, antinociceptive, and anti-inflammatory effects of HAP, and probed its possible molecular mechanisms. Our results revealed that HAP (80 mg/kg, intraperitoneally) in vivo reduced the acetic acid-induced writhing response and formalin-induced licking time. Moreover, in the λ-carrageenan-induced acute-inflammatory paw edema model in mice, HAP significantly improved hind paw swelling and neutrophil infiltration. In a homogenized paw tissue examination, HAP attenuated pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-1β, and interleukin-6. Simultaneously, HAP also inhibited the production of nuclear factor kappa B, cyclooxygenase-2, and nitric oxide (NO). Another examination revealed that HAP exerted anti-inflammatory activity by decreasing malondialdehyde levels in the edematous paw through increasing the activities of superoxide dismutase, glutathione peroxidase, and glutathione reductase in the liver. These findings may be beneficial in understanding the therapeutic effects of some plants of the genus Artemisia in the pretreatment of inflammation-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang CW, Chang WT, Liao JC, Chiu YJ, Hsieh MT, Peng WH, Lin YC (2012) Analgesic and anti-Inflammatory activities of methanol extract of Cissus repens in mice. Evid Based Complement Alternat Med 2012:135379

    PubMed  PubMed Central  Google Scholar 

  2. Wang C, Sun J, Li H, Yang X, Liu H, Chen J (2016) In vivo anti-inflammatory activities of the essential oil from Radix Angelicae dahuricae. J Nat Med 70:563–570

    Article  PubMed  Google Scholar 

  3. Chou SC, Chiu YJ, Chen CJ, Lin YC, Wu CH, Chao CT, Chang CW, Peng WH (2012) Analgesic and anti-inflammatory activities of the ethanolic extract of Artemisia morrisonensis hayata in mice. Evid Based Complement Alternat Med 2012:138954

    PubMed  PubMed Central  Google Scholar 

  4. Lim DW, Kim YT, Jang YJ, Kim YE, Han D (2013) Anti-obesity effect of Artemisia capillaris extracts in high-fat diet-induced obese rats. Molecules 18:9241–9252

    Article  CAS  PubMed  Google Scholar 

  5. Islam MN, Ishita IJ, Jung HA, Choi JS (2014) Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem Toxicol 69:55–62

    Article  CAS  PubMed  Google Scholar 

  6. Masuda Y, Asada K, Satoh R, Takada K, Kitajima J (2015) Capillin, a major constituent of Artemisia capillaris Thunb. flower essential oil, induces apoptosis through the mitochondrial pathway in human leukemia HL-60 cells. Phytomedicine 22:545–552

    Article  CAS  PubMed  Google Scholar 

  7. Huang TJ, Liu SH, Kuo YC, Chen CW, Chou SC (2014) Antiviral activity of chemical compound isolated from Artemisia morrisonensis against hepatitis B virus in vitro. Antiviral Res 101:97–104

    Article  CAS  PubMed  Google Scholar 

  8. Zhao Y, Geng CA, Chen H, Ma YB, Huang XY, Cao TW, He K, Wang H, Zhang XM, Chen JJ (2015) Isolation, synthesis and anti-hepatitis B virus evaluation of p-hydroxyacetophenone derivatives from Artemisia capillaris. Bioorg Med Chem Lett 25:1509–1514

    Article  CAS  PubMed  Google Scholar 

  9. Alvarez ME, Rotelli AE, Pelzer LE, Saad JR, Giordano O (2000) Phytochemical study and anti-inflammatory properties of Lampaya hieronymi Schum. ex Moldenke. Farmaco 55:502–505

    Article  CAS  PubMed  Google Scholar 

  10. Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140:771–776

    Article  CAS  PubMed  Google Scholar 

  11. Huston JM, Tracey KJ (2011) The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med 269:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sumantran VN, Tillu G (2012) Cancer, inflammation, and insights from Ayurveda. Evid Based Complement Alternat Med 2012:306346

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jeon IH, Mok JY, Park KH, Hwang HM, Song MS, Lee D, Lee MH, Lee WY, Chai KY, Jang SI (2012) Inhibitory effect of dibutyryl chitin ester on nitric oxide and prostaglandin E2 production in LPS stimulated RAW 264.7 cells. Arch Pharm Res 35:1287–1292

    Article  CAS  PubMed  Google Scholar 

  14. Ge YB, Wang ZG, Xiong Y, Huang XJ, Mei ZN, Hong ZG (2016) Anti-inflammatory and blood stasis activities of essential oil extracted from Artemisia argyi leaf in animals. J Nat Med 70:531–538

    Article  CAS  PubMed  Google Scholar 

  15. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72:1605–1621

    Article  CAS  PubMed  Google Scholar 

  16. Lu Y, Na MK, Suh SJ, Li X, Kim GJ, Chao GH, Jeong YT, Kim DS, Chang YC, Murakami M, Kang W, Kim CH, Chang HW (2013) Anti-inflammatory activity of hexane extracts from bones and internal organs of Anguilla japonica suppresses cyclooxygenase-2-dependent prostaglandin D2 generation in mast cells and anaphylaxis in mice. Food Chem Toxicol 57:307–313

    Article  CAS  PubMed  Google Scholar 

  17. Killeen MJ, Linder M, Pontoniere P, Crea R (2014) NF-κB signaling and chronic inflammatory diseases: exploring the potential of natural products to drive new therapeutic opportunities. Drug Discov Today 19:373–378

    Article  CAS  PubMed  Google Scholar 

  18. Armutcu F, Akyol S, Ustunsoy S, Turan FF (2015) Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (Review). Exp Ther Med 9:1582–1588

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540

    Article  CAS  PubMed  Google Scholar 

  20. Cuzzocrea S, Costantino G, Zingarelli B, Mazzon E, Micali A, Caputi AP (1999) The protective role of endogenous glutathione in carrageenan induced pleurisy in the rat. Eur J Pharmacol 372:187–197

    Article  CAS  PubMed  Google Scholar 

  21. Koster R, Anderson M, Beer DEJ (1959) Acetic acid for analgesic screening. Fed Proc 18:412–415

    Google Scholar 

  22. Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: an evaluation of the method. Pain 51:5–17

    Article  PubMed  Google Scholar 

  23. Vinegar R, Schreiber W, Hugo R (1969) Biphasic development of carrageenan edema in rats. J Pharmacol Exp Ther 166:96–103

    CAS  PubMed  Google Scholar 

  24. Lin YC, Chang CW, Wu CR (2015) Anti-nociceptive, anti-inflammatory and toxicological evaluation of Fang-Ji-Huang-Qi-Tang in rodents. BMC Complement Altern Med. doi:10.1186/s12906-015-0527-5

    Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  26. Ataoğlu T, Ungör M, Serpek B, Haliloğlu S, Ataoğlu H, Ari H (2002) Interleukin-1β and tumour necrosis factor-α levels in periapical exudates. Int Endod J 35:181–185

    Article  PubMed  Google Scholar 

  27. Petrovic N, Murray M (2010) Using N,N,N′,N′-tetramethyl-p-phenylene-diamine (TMPD) to assay cyclooxygenase activity in vitro. Methods Mol Biol 594:129–140

    Article  CAS  PubMed  Google Scholar 

  28. Moshage H, Kok B, Huizenga JR, Jansen PL (1995) Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem 41:892–896

    CAS  PubMed  Google Scholar 

  29. Tatum VL, Changchit C, Chow CK (1990) Measurement of malondialdehyde by high performance liquid chromatography with fluorescence detection. Lipids 25:226–229

    Article  CAS  Google Scholar 

  30. Vani M, Reddy GP, Reddy GR, Thyagaraju K, Reddanna P (1990) Glutathione-S-transferase, superoxide dismutase, xanthine oxidase, catalase, glutathione peroxidase and lipid peroxidation in the liver of exercised rats. Biochem Int 21:17–26

    CAS  PubMed  Google Scholar 

  31. Ceballos-Picot I, Trivier JM, Nicole A, Sinet PM, Thevenin M (1992) Age-correlated modifications of copperzinc superoxide dismutase and glutathione-related enzyme activities in human erythrocytes. Clin Chem 38:66–70

    CAS  PubMed  Google Scholar 

  32. Ahmad FB, Holdsworth DK (1994) Medicinal plants of Sabah, Malaysia, Part II. The Muruts. Int J Pharmacogn 32:378–383

    Article  Google Scholar 

  33. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769

    Article  CAS  PubMed  Google Scholar 

  34. Duarte ID, Nakamura M, Ferreira SH (1998) Participation of the sympathetic system in acetic acid-induced writhing in mice. Braz J Med Biol Res 21:341–343

    Google Scholar 

  35. Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–114

    Article  CAS  PubMed  Google Scholar 

  36. Reeve AJ, Dickenson AH (1995) The roles of spinal adenosine receptors in the control of acute and more persistent nociceptive response of dorsal horn neurons in the anaesthetized rat. Br J Pharmacol 116:2221–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hyuga S, Hyuga M, Oshima N, Maruyama T, Kamakura H, Yamashita T, Yoshimura M, Amakura Y, Hakamatsuka T, Odaguchi H, Goda Y, Hanawa T (2016) Ephedrine alkaloids-free Ephedra Herb extract: a safer alternative to ephedra with comparable analgesic, anticancer, and anti-influenza activities. J Nat Med 70:571–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Missimo DR (1972) Biological properties of carrageenan. J Pharm Pharmacol 24:89–102

    Article  Google Scholar 

  39. Vazquez E, Navarro M, Salazar Y, Crespo G, Bruges G, Osorio C, Tortorici V, Vanegas H, López M (2015) Systemic changes following carrageenan-induced paw inflammation in rats. Inflamm Res 64:333–342

    Article  CAS  PubMed  Google Scholar 

  40. Loram LC, Fuller A, Fick LG, Cartmell T, Poole S, Mitchell D (2007) Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. J Pain 8:127–136

    Article  CAS  PubMed  Google Scholar 

  41. Lu TC, Ko YZ, Huang HW, Hung YC, Lin YC, Peng WH (2007) Analgesic and anti-inflammatory activities of aqueous extract from Glycine tomentella root in mice. J Ethnopharmacol 113:142–148

    Article  PubMed  Google Scholar 

  42. El-Shitanya NA, El-Masrya SA, El-Ghareib MA, El-Desoky K (2010) Thioctic acid protects against carrageenaninduced acute inflammation in rats by reduction in oxidative stress, downregulation of COX-2 mRNA and enhancement of IL-10 mRNA. Fundam Clin Pharmacol 24:91–99

    Article  Google Scholar 

  43. Schütze S, Wiegmann K, Machleidt T, Krönke M (1995) TNF-induced activation of NF-kappaB. Immunobiology 193:193–203

    Article  PubMed  Google Scholar 

  44. Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109:S81–S96

    Article  CAS  PubMed  Google Scholar 

  45. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA 91:12013–12017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vodovotz Y, Kim PK, Bagci EZ, Ermentrout GB, Chow CC, Bahar I, Billiar TR (2004) Inflammatory modulation of hepatocyte apoptosis by nitric oxide: in vivo, in vitro, and in silico studies. Curr Mol Med 4:753–762

    Article  CAS  PubMed  Google Scholar 

  47. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  CAS  PubMed  Google Scholar 

  48. Yusufoglu HS (2014) Analgesic, antipyretic, anti-inflammatory, hepatoprotective and ephritic effects of the aerial parts of pulicaria arabica (Family: Compositae) on rats. Asian Pac J Trop Med doi:10.1016/S1995-7645(14)60293-5

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Department of Chinese Medicine and Pharmacy, Ministry of Health and Welfare (MOHW104-CMAP-M-114-000423, MOHW105-CMAP-M-114-000418).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Yu-Chin or Peng Wen-Huang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ching-Wen, C., Yun-Chieh, C., Yu-Chin, L. et al. p-Hydroxyacetophenone suppresses nuclear factor-κB-related inflammation in nociceptive and inflammatory animal models. J Nat Med 71, 422–432 (2017). https://doi.org/10.1007/s11418-017-1074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-017-1074-9

Keywords

Navigation