Skip to main content
Log in

Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

We have previously reported the effects of Kaempferia parviflora (KP), including anti-obesity, preventing various metabolic diseases, and regulating differentiation of white adipose cells. In this study we used Tsumura, Suzuki, Obese Diabetes (TSOD) mice—an animal model of spontaneous obese type II diabetes—and primary brown preadipocytes to examine the effects of the ethyl acetate extract of KP (KPE) on brown adipose tissue, which is one of the energy expenditure organs. TSOD mice were fed with MF mixed with either KPE 0.3 or 1 % for 8 weeks. Computed tomography images showed that whitening of brown adipocytes was suppressed in the interscapular tissue of the KPE group. We also examined mRNA expression of uncoupling protein 1 (UCP-1) and β3-adrenalin receptor (β3AR) in brown adipose tissue. As a result, mRNA expression of UCP-1 significantly increased in the KPE 1 % treatment group, indicating that KPE activated brown adipose tissue. We then evaluated the direct effects of KPE on brown adipocytes using primary brown preadipocytes isolated from interscapular brown adipocytes in ICR mice. Triacylglycerol (TG) accumulation in primary brown preadipocytes was increased by KPE in a dose-dependent manner. Each mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), UCP-1, and β3AR exhibited an upward trend compared with the control group. Moreover, some polymethoxyflavonoids (PMFs), the main compound in KP, also increased TG accumulation. This study therefore showed that KPE enhanced the thermogenesis effect of brown adipocytes as well as promoted the differentiation of brown adipocyte cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts-Toler C, Weiner LS, Sze C, Chacko AT, Deschamps LN, Herder LM, Truchan N, Glasgow AL, Holman AR, Gavrila A, Hasselgren P-O, Mori MA, Molla M, Tseng Y-H (2013) Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 19:635–639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Unamia A, Shinohara Y, Kajimoto K, Baba Y (2004) Comparison of gene expression profiles between white and brown adipose tissues of rat by microarray analysis. Biochem Pharmacol 67:555–564

    Article  Google Scholar 

  3. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  CAS  PubMed  Google Scholar 

  4. Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660

    CAS  PubMed  Google Scholar 

  5. Hondares E, Mora O, Yubero P, de la Concepcio´n MR, Iglesias R, Giralt M, Villarroya F (2006) Thiazolidinediones and rexinoids induce peroxisome proliferators-activated receptor-coactivator (PGC)-1α gene transcription: an autoregulatory loop controls PGC-1α expression in adipocytes via peroxisome proliferator-activated receptor-γ coactivation. Endocrinology 147:2829–2838

    Article  CAS  PubMed  Google Scholar 

  6. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPARy2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  CAS  PubMed  Google Scholar 

  7. Sawasdee P, Sabphon C, Sitthiwongwanit D, Kokpol U (2009) Anticholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora. Phytother Res 23:1792–1794

    Article  CAS  PubMed  Google Scholar 

  8. Sae-wong C, Tansakul P, Tewtrakul S (2009) Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals. J Ethnopharmacol 124:576–580

    Article  CAS  PubMed  Google Scholar 

  9. Sae-Wong C, Matsuda H, Tewtrakul S, Tansakul P, Nakamura S, Nomura Y, Yoshikawa M (2011) Suppressive effect of methoxyflavonoids isolated from Kaempferia Parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. J Ethnopharmacol 136:488–495

    Article  CAS  PubMed  Google Scholar 

  10. Wattanapitayakul SK, Chularojmontri L, Herunsalee A, Charuchongkolwongse S, Chansuvanich N (2008) Vasorelaxation and antispasmodic effects of Kaempferia parviflora ethanolic extract in isolated rat organ studies. Fitoterapia 79:214–216

    Article  PubMed  Google Scholar 

  11. Tewtrakul S, Subhadhirasakul S (2007) Anti-allergic activity of some selected plants in the Zingiberaceae family. J Ethnopharmacol 109:535–538

    Article  PubMed  Google Scholar 

  12. Wattanapitayakul SK, Suwatronnakorn M, Chularojmontri L, Herunsalee A, Niumsakul S, Charuchongkolwongse S, Chansuvanich N (2007) Kaempferia Fitoterapia ethanolic extract promoted nitric oxide production in human umbilical vein endothelial cells. J Ethnopharmacol 110:559–562

    Article  CAS  PubMed  Google Scholar 

  13. Rujjanawate C, Kanjanapothi D, Amornlerdpison D, Pojanagaroon S (2005) Anti-gastric ulcer effect of Kaempferia Fitoterapia. J Ethnopharmacol 102:120–122

    Article  CAS  PubMed  Google Scholar 

  14. Kusirisin W, Srichairatanakool S, Lerttrakarnnon P, Lailerd N, Suttajit M, Jaikang C, Chaiyasut C (2009) Antioxidative activity, polyphenolic content and anti-glycation effect of some Thai medicinal plants traditionally used in diabetic patients. Med Chem 5:139–147

    Article  CAS  PubMed  Google Scholar 

  15. Malakul W, Ingkaninan K, Sawasdee P, Woodman OL (2011) The ethanolic extract of Kaempferia parviflora reduces ischaemic injury in rat isolated hearts. J Ethnopharmacol 137:184–191

    Article  PubMed  Google Scholar 

  16. Akase T, Shimada T, Terabayashi S, Ikeya Y, Sanada H, Aburada M (2011) Antiobesity effects of Kaempferia parviflora in spontaneously obese type II diabetic mice. J Nat Med 63:73–80

    Article  Google Scholar 

  17. Shimada T, Horikawa T, Ikeya Y, Matsuo H, Kinoshita K, Taguchi T, Ichinose K, Takahashi K, Aburada M (2011) Preventive effect of Kaempferia parviflora ethyl acetate extract and its major components polymethoxyflavonoid on metabolic diseases. Fitoterapia 82:1272–1278

    Article  CAS  PubMed  Google Scholar 

  18. Horikawa T, Shimada T, Okabe Y, Kinoshita K, Koyama K, Miyamoto K, Ichinose K, Takahashi K, Aburada M (2012) Polymethoxyflavonoids from Kaempferia parviflora induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation. Biol Pharm Bull 35:686–692

    Article  CAS  PubMed  Google Scholar 

  19. Okabe Y, Shimada T, Horikawa T, Kinoshita K, Koyama K, Ichinose K, Aburada M, Takahashi K (2014) Suppression of adipocyte hypertrophy by polymethoxyflavonoids isolated from Kaempferia parviflora. Phytomedicine 21:800–806

    Article  CAS  PubMed  Google Scholar 

  20. Sutthanut K, Sripnidkulchai B, Yenjai C, Jay M (2007) Simultaneous identification and quantitation of 11 flavonoid constituents in Kaempferia parviflora by gas chromatography. J Chromatogr A 1143:227–233

    Article  CAS  PubMed  Google Scholar 

  21. Azuma T, Tanaka Y, Kikuzaki H (2008) Phenolic glycosides from Kaempferia parviflora. Phytochemistry 69:2743–2748

    Article  CAS  PubMed  Google Scholar 

  22. Panthong A, Tassaneeyakul W, Kanjanapothi D, Tantiwachwuttikul P, Reutrakul V (1989) Anti-inflammatory activity of 5,7-dimethoxyflavone. Planta Med 55:133–136

    Article  CAS  PubMed  Google Scholar 

  23. Yenjai C, Prasanphen K, Daodee S, Wongpanich V, Kittakoop P (2004) Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 75:85–92

    Article  Google Scholar 

  24. Yoshino S, Kim M, Awa R, Kuwahara H, Kano Y, Kawada T (2014) Kaempferia parviflora extract increases energy consumption through activation of BAT in mice. Food Sci Nutr 2:634–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Nechad M, Kuusela P, Carneheim C, Bjorntorp P, Nedergaard J, Cannon B (1983) Development of brown fat cells in monolayer culture. I. morphological and biochemical distinction from white fat cells in culture. Exp Cell Res 149:105–118

    Article  CAS  PubMed  Google Scholar 

  26. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J Biol Chem 270:12953–12956

    Article  CAS  PubMed  Google Scholar 

  27. Xiao Y, Yuan T, Yao W, Liao K (2010) 3T3-L1 adipocyte apoptosis induced by thiazolidinediones is peroxisome proliferator-activated receptor-c-dependent and mediated by the caspase-3-dependent apoptotic pathway. FEBS J 277:687–696

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Shimada.

Additional information

Hiroko Kobayashi and Emi Horiguchi-Babamoto contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, H., Horiguchi-Babamoto, E., Suzuki, M. et al. Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue. J Nat Med 70, 54–61 (2016). https://doi.org/10.1007/s11418-015-0936-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-015-0936-2

Keywords

Navigation