Skip to main content
Log in

An Energy Stable Monolithic Eulerian Fluid-Structure Numerical Scheme

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The conservation laws of continuum mechanics, written in an Eulerian frame, do not distinguish fluids and solids, except in the expression of the stress tensors, usually with Newton’s hypothesis for the fluids and Helmholtz potentials of energy for hyperelastic solids. By taking the velocities as unknown monolithic methods for fluid structure interactions (FSI for short) are built. In this paper such a formulation is analysed when the solid is compressible and the fluid is incompressible. The idea is not new but the progress of mesh generators and numerical schemes like the Characteristics-Galerkin method render this approach feasible and reasonably robust. In this paper the method and its discretisation are presented, stability is discussed through an energy estimate. A numerical section discusses implementation issues and presents a few simple tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antman, S. S., Nonlinear Problems of Elasticity, (2nd ed.), Applied Mathematical Sciences, 107, Springer-Verlag, New York, 2005.

    MATH  Google Scholar 

  2. Bathe, K. J., Finite Element Procedures, Prentice-Hall, Englewood Cliffs, NJ, 1996.

    MATH  Google Scholar 

  3. Bathe, K. J., Ramm, E. and Wilson, E. L., Finite element formulations for large deformation dynamic analysis, Int. J. Numer. Methods Eng., 9(2), 1975, 353–386.

    Article  MATH  Google Scholar 

  4. Boffi, D., Brezzi, F. and Fortin, M., Mixed Finite Element Methods and Applications, Computational Mathematics, Heidelberg, 44, Springer-Verlag, Berlin, 2013.

    Book  MATH  Google Scholar 

  5. Boffi, D., Cavallini, N. and Gastaldi, L., The finite element immersed boundary method with distributed Lagrange multiplier, SIAM J. Numer. Anal., 53(6), 2015, 2584–2604.

    Article  MathSciNet  MATH  Google Scholar 

  6. Boulakia, M., Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid, C. R. Math. Acad. Sci. Paris, 336(12), 2003, 985–990.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bukaca, M., Canic, S., Glowinski, R., et al., Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement, Journal of Computational Physics, 235, 2013, 515–541.

    Article  MathSciNet  Google Scholar 

  8. Chiang, C.-Y., Pironneau, O., Sheu, T. and Thiriet, M., Numerical study of a 3D Eulerian monolithic formulation for fluid-structure-interaction, Fluids, 2017.

    Google Scholar 

  9. Ciarlet, P. G., Mathematical Elasticity, I., Three-dimensional Elasticity, North Holland, Amsterdam, 1988.

    MATH  Google Scholar 

  10. Cottet, G. H., Maitre, E. and Milcent, T., Eulerian formulation and level set models for incompressible fluid-structure interaction, M2AN Math. Model. Numer. Anal., 42(3), 2008, 471–492.

    Article  MathSciNet  MATH  Google Scholar 

  11. Coupez, T., Silva, L. and Hachem, E., Implicit Boundary and Adaptive Anisotropic Meshes, New challenges in Grid Generation and Adaptivity for Scientific Computing, S. Peretto and L. Formaggia (eds.), 5, Springer-Verlag, Cham, 2015.

    Google Scholar 

  12. Coutand, D. and Shkoller, S., Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal., 176(1), 2005, 25–102.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dunne, T., Adaptive finite element approximation of fluid-structure interaction based on an Eulerian variational formulation, ECCOMAS CFD, 2006, Wesseling, P., O˜nate, E. and Périaux, J. (eds.), Elsevier, TU Delft, The Netherlands, 2006.

    Book  MATH  Google Scholar 

  14. Dunne, T., An Eulerian approach to fluid-structure interaction and goal-oriented mesh adaptation, Int. J. Numer. Meth. Fluids, 51, 2006, 1017–1039.

    Article  MathSciNet  MATH  Google Scholar 

  15. Dunne, Th. and Rannacher, R. Adaptive Finite Element Approximation of Fluid-Structure Interaction Based on an Eulerian Variational Formulation, Fluid-Structure Interaction: Modelling, Simulation, Optimization, Bungartz, H-J. and Schaefer, M. (eds.), Lecture Notes in Computational Science and Engineering, 53, Springer-Verlag, Berlin, 2006, 110–146.

    Chapter  Google Scholar 

  16. Fernandez, M. A., Mullaert, J. and Vidrascu, M., Explicit Robin-Neumann schemes for the coupling of incompressible fluids with thin-walled structures, Comp. Methods in Applied Mech. and Engg., 267, 2013, 566–593.

    Article  MathSciNet  MATH  Google Scholar 

  17. Formaggia, L., Quarteroni, A. and Veneziani, A., Alessandro Multiscale Models of the Vascular System, Cardiovasuclar Mathematics, Springer-Verlag, Italia, Milan, 2009, 395–446.

    Google Scholar 

  18. Hecht, F., New development in FreeFem++, J. Numer. Math., 20, 2012, 251–265, http://www.FreeFem. org.

    Article  MathSciNet  MATH  Google Scholar 

  19. Hecht, F. and Pironneau, O., An energy stable monolithic Eulerian fluid-structure finite element method, International Journal for Numerical Methods in Fluids, 85(7), 2017, 430–446.

    Article  MathSciNet  Google Scholar 

  20. Change Heil, Matthias to Heil, M., Solvers for large-displacement fluid structure interaction problems: Segregated versus monolithic approaches, Comput. Mech., 43, 2008, 91–101.

    Article  MATH  Google Scholar 

  21. Hron, J. and Turek, S., A monolithic fem solver for an ALE formulation of fluid-structure interaction with configuration for numerical benchmarking, European Conference on Computational Fluid Dynamics ECCOMAS CFD, 2006, Wesseling, P., Onate, E. and Periaux, J. (eds.), TU Delft, The Netherlands, 2006.

    Google Scholar 

  22. Léger, S., Méthode lagrangienne actualisée pour des problèmes hyperélastiques en très grandes déformations, Thèse de Doctorat, Université Laval, 2014 (in France).

    Google Scholar 

  23. Le Tallec, P. and Hauret, P., Energy conservation in Fluid-Structure Interactions, Numerical Methods for Scientific Computing, Variational Problems And Applications, Neittanmaki, P., Kuznetsov, Y. and Pironneau, O. (eds.), CIMNE, Barcelona, 2003.

    Google Scholar 

  24. Le Tallec, P. and Mouro, J., Fluid structure interaction with large structural displacements, Comp. Meth. Appl. Mech. Eng., 190(24–25), 2001, 3039–3068.

    Article  MATH  Google Scholar 

  25. Liu, J., A second-order changing-connectivity ALE scheme and its application to FSI with large convection of fluids and near-contact of structures, Journal of Computational Physics, 304, 2016, 380–423.

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, I-Shih, Cipolatti, R. and Rincon, M. A., Incremental Linear Approximation for Finite Elasticity, Proc. ICNAAM, Wiley, 2006.

    MATH  Google Scholar 

  27. Marsden, J. and Hughes, T. J. R., Mathematical Foundations of Elasticity, Dover Publications, New York, 1994.

    MATH  Google Scholar 

  28. Nobile, F. and Vergara, C., An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions, SIAM J. Sci. Comp., 30(2), 2008, 731–763.

    Article  MathSciNet  MATH  Google Scholar 

  29. Peskin, C. S., The immersed boundary method, Acta Numerica, 11, 2002, 479–517.

    Article  MathSciNet  MATH  Google Scholar 

  30. Pironneau, O., Numerical Study of a Monolithic Fluid-Structure Formulation, Variational Analysis and Aerospace Engineering, 116, Springer-Verlag, Cham, 2016.

    Google Scholar 

  31. Rannacher, R. and Richter, T., An Adaptive Finite Element Method for Fluid-Structure Interaction Problems Based on a Fully Eulerian Formulation, Lecture Notes in Computational Science and Engineering, 73, Springer-Verlag, Heidelberg, 2010.

    MATH  Google Scholar 

  32. Raymond, J.-P. and Vanninathan, M., A fluid-structure model coupling the Navier-Stokes equations and the Lamé system, J. Math. Pures Appl., 102, 2014, 546–596.

    Article  MathSciNet  MATH  Google Scholar 

  33. Richter, Th. and Wick, Th., Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates, Comput. Methods Appl. Mech. Engrg., 199, 2010, 2633–2642.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y. X., The Accurate and Efficient Numerical Simulation of General Fluid Structure Interaction: A Unified Finite Element Method, Proc. Conf. on FSI problems, IMS-NUS, Singapore, 2016.

    Google Scholar 

Download references

Acknowledgements

The author thanks Frédéric Hecht for very valuable discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pironneau.

Additional information

Dedicated to Philippe G. Ciarlet on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pironneau, O. An Energy Stable Monolithic Eulerian Fluid-Structure Numerical Scheme. Chin. Ann. Math. Ser. B 39, 213–232 (2018). https://doi.org/10.1007/s11401-018-1061-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-018-1061-9

Keywords

2000 MR Subject Classification

Navigation