Skip to main content
Log in

Quenching phenomenon for a parabolic MEMS equation

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

This paper deals with the electrostatic MEMS-device parabolic equation

$${u_t} - \Delta u = \frac{{\lambda f(x)}}{{{{(1 - u)}^p}}}$$

in a bounded domain Ω of ℝN, with Dirichlet boundary condition, an initial condition u0(x) ∈ [0, 1) and a nonnegative profile f, where λ > 0, p > 1. The study is motivated by a simplified micro-electromechanical system (MEMS for short) device model. In this paper, the author first gives an asymptotic behavior of the quenching time T* for the solution u to the parabolic problem with zero initial data. Secondly, the author investigates when the solution u will quench, with general λ, u0(x). Finally, a global existence in the MEMS modeling is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosetti, A. and Prodi, G., A Primer of Nonlinear Analysis, Cambridge University Press, Cambridge, Massachusetts, 1995.

    MATH  Google Scholar 

  2. Brauner, C. M. and Nicolaenko, B., Sur une classe de problemes elliptiques non lineaires, C. R. Acad. Sci. Paris A, 286, 1978, 1007–1010.

    MathSciNet  MATH  Google Scholar 

  3. Brezis, H., Cazenave, T., Martel, Y. and Ramiandrisoa, A., Blow-up for ut-≦u = g(u) revisited, Advances in Differential Equations, 1, 1996, 73–90.

    MathSciNet  MATH  Google Scholar 

  4. Cantrell, R. S. and Cosner, C., Spatial Ecology via Reaction-Diffusion Equations, Wiley, Chichester, 2003.

    MATH  Google Scholar 

  5. Esposito, P. and Ghoussoub, N., Uniqueness of solutions for an elliptic equation modeling MEMS, Methods Appl. Anal., 15(3), 2008, 341–354.

    MathSciNet  MATH  Google Scholar 

  6. Esposito, P., Ghoussoub, N. and Guo, Y. J., Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math., 60(12), 2007, 1731–1768.

    Article  MathSciNet  MATH  Google Scholar 

  7. Esposito, P., Ghoussoub, N. and Guo, Y. J., Mathematical analysis of partial differential equations mod- eling electrostatic MEMS, Courant Lecture Notes in Mathematics, 20, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010.

  8. Flores, G., Mercado, G. A. and Pelesko, J. A., Dynamics and touchdown in electrostatic MEMS, Proceed- ings of ASME DETC’03, IEEE Computer Soc., 2003, 1–8.

    Google Scholar 

  9. Ghoussoub, N. and Guo, Y. J., Estimates for the quenching time of a parabolic equation modeling elec- trostatic MEMS, Methods Appl. Anal., 15(3), 2008, 361–376.

    MathSciNet  MATH  Google Scholar 

  10. Ghoussoub, N. and Guo, Y. J., On the partial differential equations of electrostatic MEMS devices: Sta- tionary case, SIAM J. Math. Anal., 38, 2007, 1423–1449.

    Article  MATH  Google Scholar 

  11. Ghoussoub, N. and Guo, Y. J., On the partial differential equations of electrostatic MEMS devices II: Dynamic case, NoDEA Nonlinear Differ. Equ. Appl., 15, 2008, 115–145.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghoussoub, N. and Guo, Y. J., On the partial differential equations of electrostatic MEMS devices III: Refined touchdown behavior, J. Differ. Equ., 244, 2008, 2277–2309.

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, Y. J., Pan, Z. G. and Ward, M. J., Touchdown and pull-in voltage behavior of an MEMS device with varying dielectric properties, SIAM J. Appl. Math., 66(1), 2005, 309–338.

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, B., Blow-up Theories for Semilinear Parabolic Equations, Springer-Verlag, Berlin, 2011.

    Book  MATH  Google Scholar 

  15. Lacey, A. A., Mathematical analysis of thermal runaway for spatially inhomogeneous reactions, SIAM J. Appl. Math., 43, 1983, 1350–1366.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, F. H. and Yang, Y. S., Nonlinear non-local elliptic equation modelling electrostatic actuation, Proc. R. Soc. A, 463, 2007, 1323–1337.

    Article  MathSciNet  MATH  Google Scholar 

  17. Mignot, F. and Puel, J. P., Sur une classe de probleme non lineaires avec non linearite positive, croissante, convexe, Comm. P.D.E., 5(8), 1980, 791–836.

    Article  MATH  Google Scholar 

  18. Pelesko, J. A. and Berstein, D. H., Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, 2002.

    Book  Google Scholar 

  19. Pelesko, J. A., Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM J. Appl. Math., 62(3), 2002, 888–908.

    Article  MathSciNet  MATH  Google Scholar 

  20. Sattinger, D. H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21, 1972, 979–1000.

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Q., Estimates for the quenching time of an MEMS equation with fringing field, J. Math. Anal. Appl., 405, 2013, 135–147.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ye, D. and Zhou, F., On a general family of nonautonomous elliptic and parabolic equations, Calc. Var., 37, 2010, 259–274.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q. Quenching phenomenon for a parabolic MEMS equation. Chin. Ann. Math. Ser. B 39, 129–144 (2018). https://doi.org/10.1007/s11401-018-1056-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-018-1056-6

Keywords

2000 MR Subject Classification

Navigation