Skip to main content
Log in

Dimension of slices through fractals with initial cubic pattern

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

In this paper, the Hausdorff dimension of the intersection of self-similar fractals in Euclidean space Rn generated from an initial cube pattern with an (n−m)-dimensional hyperplane V in a fixed direction is discussed. The authors give a sufficient condition which ensures that the Hausdorff dimensions of the slices of the fractal sets generated by “multi-rules” take the value in Marstrand’s theorem, i.e., the dimension of the self-similar sets minus one. For the self-similar fractals generated with initial cube pattern, this sufficient condition also ensures that the projection measure μV is absolutely continuous with respect to the Lebesgue measure L m. When μVL m, the connection of the local dimension of μV and the box dimension of slices is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Báraány, B., Furguson, A. and Simon, K., Slicing the Sierpinski gasket, Nonlinearity, 25, 2012, 1753–1770.

    Article  MathSciNet  MATH  Google Scholar 

  2. David, G. and Semmes, S., Fractured fractals and broken dreams: Self-similar geometry through metric and measure, Oxford Lecture Series in Mathematics and Its Applications, vol. 7, The Clarendon Press Oxford University Press, New York, 1997.

    MATH  Google Scholar 

  3. Feng, D. J. and Hu, H., Dimension theory of iterated function systems, Comm. Pure Appl. Math., 62, 2009, 1435–1500.

    Article  MathSciNet  MATH  Google Scholar 

  4. Feng, D. J., Private communication.

  5. Furstenberg, H., Ergodic fractal measures and dimension conservation, Ergodic Theory Dyn. Syst., 28, 2008, 405–422.

    Article  MathSciNet  MATH  Google Scholar 

  6. Hawkes, J., Some algebraic properties of small sets, Quart. J. Math. Oxford Ser., 26, 1975, 195–201.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hutchinson, J. E., Fractals and self similarity, Indiana Univ. Math. J., 30, 1981, 713–747.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kenyon, R. and Peres, Y., Intersecting random translates of invariant Cantor sets, Invent. Math., 104, 1991, 601–629.

    Article  MathSciNet  MATH  Google Scholar 

  9. Lau, K. S., Ngai, S. M. and Rao, H., Iterated function systems with overlaps and self-similar measures, J. London Math. Soc., 63, 2001, 99–116.

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, Q. H., Xi, L. F. and Zhao, Y. F., Dimensions of intersections of the Sierpinski carpet with lines of rational slopes, Proc. Edinb. Math. Soc., 50, 2007, 411–428.

    Article  MathSciNet  MATH  Google Scholar 

  11. Manning, A. and Simon, K., Dimension of slices through the Sierpinski carpet, Trans. Amer. Math. Soc., 365, 2013, 213–250.

    Article  MathSciNet  MATH  Google Scholar 

  12. Marstrand, J. M., Some fundamental geometrical properties of plane sets of fractional dimension, Proc. Lond. Math. Soc., 4, 1954, 257–302.

    Article  MathSciNet  MATH  Google Scholar 

  13. Mattila, P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.

    Book  MATH  Google Scholar 

  14. Niu, M. and Xi, L. F., Singularity of a class of self-similar measures, Chaos, Solitons and Fractals, 34, 2007, 376–382.

    Article  MathSciNet  MATH  Google Scholar 

  15. Protasov, V., Refinement equations with non-negative coefficients, J. Fourier Anal. Appl., 6(1), 2000, 55–77.

    Article  MathSciNet  MATH  Google Scholar 

  16. Peres, Y., Schlag, W. and Solomyak, B., Sixty years of Bernoulli convolutions in fractal geometry and stochastics, II(Greifsward/Koserow, 1998), Progr. Probab., Vol. 46, Birkhuser, Basel, 39–65, 2000.

    Google Scholar 

  17. Walters, P., An Introduction to Ergodic Theory, Springer-Verlag, 1982.

    Book  MATH  Google Scholar 

  18. Wen, Z. X., Wu, W. and Xi, L. F., Dimension of slices through a self-similar set with initial cubic pattern, Ann. Acad. Sci. Fenn. Math., 38, 2013, 473–487.

    Article  MathSciNet  MATH  Google Scholar 

  19. Wen, Z. Y. and Xi, L. F., On the dimensions of sections for the graph-directed sets, Ann. Acad. Sci. Fenn. Math., 35, 2010, 515–535.

    Article  MathSciNet  MATH  Google Scholar 

  20. Wen, Z. Y., Moran sets and Moran classes, Chin. Sci. Bull., 46(22), 2001, 1849–1856.

    Article  MathSciNet  Google Scholar 

  21. Wu, W. and Xi, L. F., Dimensions of slices through a class of generalized Sierpinski sponges, J. Math. Anal. Appl., 399, 2013, 514–523.

    Article  MathSciNet  MATH  Google Scholar 

  22. Young, L. S., Dimension entropy and Lyapunov exponents, Ergodic Theory Dyn. Syst., 2, 1982, 109–124.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Wu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11371329, 11471124, 11071090, 11071224, 11101159, 11401188), K.C.Wong Magna Fund in Ningbo University, the Natural Science Foundation of Zhejiang Province (Nos. LR13A010001, LY12F02011) and the Natural Science Foundation of Guangdong Province (No. S2011040005741).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, L., Wu, W. & Xiong, Y. Dimension of slices through fractals with initial cubic pattern. Chin. Ann. Math. Ser. B 38, 1145–1178 (2017). https://doi.org/10.1007/s11401-017-1029-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-017-1029-1

Keywords

2000 MR Subject Classification

Navigation