Skip to main content
Log in

Characterization of glycinergic synapses in vertebrate retinas

  • Published:
Journal of Biomedical Science

Summary

Glycine is one of the essential neurotransmitters modulating visual signals in retina. Glycine activates Cl- permeable receptors that conduct either inhibitory or excitatory actions, depending on the Cl electrical–chemical gradient (E Cl) positive or negative to the resting potential in the cells. Interestingly, both glycine-induced inhibitory and excitatory responses are present in adult retinas, and the effects are confined in the inner and outer retinal neurons. Glycine inhibits glutamate synapses in the inner plexiform layer (IPL), resulting in shaping light responses in ganglion cells. In contrast, glycine excites horizontal cells and On-bipolar dendrites in the outer plexiform layer (OPL). The function of glycinergic synapse in the outer retina represents the effect of network feedback from a group of centrifugal neurons, glycinergic interplexiform cells. Moreover, immunocytochemical studies identify glycine receptor subunits (α1, α2, α3 and β) in retinas, forming picrotoxin-sensitive α-homomeric and picrotoxin-insensitive α/β-heteromeric receptors. Glycine receptors are modulated by intracellular Ca2+ and protein kinas C and A pathways. Extracellular Zn2+ regulates glycine receptors in a concentration-dependent manner, nanomolar Zn2+ enhancing glycine responses, and micromolar Zn2+ suppressing glycine responses in retinal neurons. These studies describe the function and mechanism of glycinergic synapses in retinas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langosch D., Thomas L., Betz H. (1988) Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc. Natl. Acad. Sci. U S A 85:7394–7398

    Article  PubMed  CAS  Google Scholar 

  2. Takahashi T., Momiyama A., Hirai K., Hishinuma F., Akagi H. (1992) Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron 9:1155–1161

    Article  PubMed  CAS  Google Scholar 

  3. Becker C.M., Hoch W., Betz H. (1988) Glycine receptor heterogeneity in rat spinal cord during postnatal development. EMBO J. 7:3717–3726

    PubMed  CAS  Google Scholar 

  4. Friauf E., Hammerschmidt B., Kirsch J. (1997) Development of adult-type inhibitory glycine receptors in the central auditory system of rats. J. Comp. Neurol. 385:117–134

    Article  PubMed  CAS  Google Scholar 

  5. Pribilla I., Takagi T., Langosch D., Bormann J., Betz H. (1992) The atypical M2 segment of the beta subunit confers picrotoxinin resistance to inhibitory glycine receptor channels. EMBO J. 11:4305–4311

    PubMed  CAS  Google Scholar 

  6. Devignot V., Prado de C.L., Bregestovski P., Goblet C. (2003) A novel glycine receptor alpha Z1 subunit variant in the zebrafish brain. Neuroscience 122:449–457

    Article  PubMed  CAS  Google Scholar 

  7. Harvey R.J., Schmieden V., Von H.A., Laube B., Rohrer H., Betz H. (2000) Glycine receptors containing the alpha4 subunit in the embryonic sympathetic nervous system, spinal cord and male genital ridge. Eur. J. Neurosci. 12:994–1001

    Article  PubMed  CAS  Google Scholar 

  8. Matzenbach B., Maulet Y., Sefton L., Courtier B., Avner P., Guenet J.L., Betz H. (1994) Structural analysis of mouse glycine receptor alpha subunit genes. Identification and chromosomal localization of a novel variant. J. Biol. Chem. 269:2607–2612

    PubMed  CAS  Google Scholar 

  9. Kandler K., Friauf E. (1995) Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J. Neurosci. 15:6890–6904

    PubMed  CAS  Google Scholar 

  10. Kawa K. (2003) Glycine facilitates transmitter release at developing synapses: a patch clamp study from Purkinje neurons of the newborn rat. Brain Res. Dev. Brain Res. 144:57–71

    Article  PubMed  CAS  Google Scholar 

  11. Cui J., Ma Y.P., Lipton S.A., Pan Z.H. (2003) Glycine receptors and glycinergic synaptic input at the axon terminals of mammalian retinal rod bipolar cells. J. Physiol. 553:895–909

    Article  PubMed  CAS  Google Scholar 

  12. Grunert U., Wassle H. (1993) Immunocytochemical localization of glycine receptors in the mammalian retina. J. Comp. Neurol. 335:523–537

    Article  PubMed  CAS  Google Scholar 

  13. Haverkamp S., Muller U., Harvey K., Harvey R.J., Betz H., Wassle H. (2003) Diversity of glycine receptors in the mouse retina: localization of the alpha3 subunit. J. Comp. Neurol. 465:524–539

    Article  PubMed  CAS  Google Scholar 

  14. Haverkamp S., Muller U., Zeilhofer H.U., Harvey R.J., Wassle H. (2004) Diversity of glycine receptors in the mouse retina: localization of the alpha2 subunit. J. Comp. Neurol. 477:399–411

    Article  PubMed  CAS  Google Scholar 

  15. Jusuf P.R., Haverkamp S., Grunert U. (2005) Localization of glycine receptor alpha subunits on bipolar and amacrine cells in primate retina. J. Comp. Neurol. 488:113–128

    Article  PubMed  CAS  Google Scholar 

  16. Muller J.F., Ammermuller J., Normann R.A., Kolb H. (1991) Synaptic inputs to physiologically defined turtle retinal ganglion cells. Vis. Neurosci. 7:409–429

    PubMed  CAS  Google Scholar 

  17. Vitanova L. (2006) Immunocytochemical study of glycine receptors in the retina of the frog Xenopus laevis. Anat. Embryol. (Berl) 211:237–245

    Article  CAS  Google Scholar 

  18. Yazulla S., Studholme K.M. (1991) Glycine-receptor immunoreactivity in retinal bipolar cells is postsynaptic to glycinergic and GABAergic amacrine cell synapses. J. Comp. Neurol. 310:11–20

    Article  PubMed  CAS  Google Scholar 

  19. Ivanova E., Muller U., Wassle H. (2006) Characterization of the glycinergic input to bipolar cells of the mouse retina. Eur. J. Neurosci. 23:350–364

    Article  PubMed  Google Scholar 

  20. Balse E., Tessier L.H., Forster V., Roux M.J., Sahel J.A., Picaud S. (2006) Glycine receptors in a population of adult mammalian cones. J. Physiol. 571:391–401

    Article  PubMed  CAS  Google Scholar 

  21. Lee S.C., Zhong Y.M., Yang X.L. (2005) Expression of glycine receptor and transporter on bullfrog retinal Muller cells. Neurosci. Lett. 387:75–79

    Article  PubMed  CAS  Google Scholar 

  22. O’Brien B.J., Richardson R.C., Berson D.M. (2003) Inhibitory network properties shaping the light evoked responses of cat alpha retinal ganglion cells. Vis. Neurosci. 20:351–361

    Article  PubMed  Google Scholar 

  23. Young-Pearse T.L., Ivic L., Kriegstein A.R., Cepko C.L. (2006) Characterization of mice with targeted deletion of glycine receptor alpha 2. Mol. Cell Biol. 26:5728–5734

    Article  PubMed  CAS  Google Scholar 

  24. Pan Z.H., Slaughter M.M. (1995) Comparison of the actions of glycine and related amino acids on isolated third order neurons from the tiger salamander retina. Neuroscience 64:153–164

    Article  PubMed  CAS  Google Scholar 

  25. Gisselmann G., Galler A., Friedrich F., Hatt H., Bormann J. (2002) Cloning and functional characterization of two glycine receptor alpha-subunits from the perch retina. Eur. J. Neurosci. 16:69–80

    Article  PubMed  CAS  Google Scholar 

  26. Wang P., Slaughter M.M. (2005) Effects of GABA receptor antagonists on retinal glycine receptors and on homomeric glycine receptor alpha subunits. J. Neurophysiol. 93:3120–3312

    Article  PubMed  CAS  Google Scholar 

  27. Gao F., Wu S.M. (1998) Characterization of spontaneous inhibitory synaptic currents in salamander retinal ganglion cells. J. Neurophysiol. 80(4):1752–1764

    PubMed  CAS  Google Scholar 

  28. Han Y., Zhang J., Slaughter M.M. (1997) Partition of transient and sustained inhibitory glycinergic input to retinal ganglion cells. J. Neurosci. 17:3392–3400

    PubMed  CAS  Google Scholar 

  29. Shen W. (2005) Repetitive light stimulation inducing glycine receptor plasticity in the retinal neurons. J. Neurophysiol. 94:2231–2238

    Article  PubMed  CAS  Google Scholar 

  30. Salceda R., guirre-Ramirez M. (2005) Characterization of strychnine-sensitive glycine receptor in the intact frog retina: modulation by protein kinases. Neurochem. Res. 30:411–416

    Article  PubMed  CAS  Google Scholar 

  31. Han Y., Slaughter M.M. (1998) Protein kinases modulate two glycine currents in salamander retinal ganglion cells. J. Physiol. 508(Pt 3):681–690

    Article  PubMed  CAS  Google Scholar 

  32. Han Y., Wu S.M. (1999) Modulation of glycine receptors in retinal ganglion cells by zinc. Proc. Natl. Acad. Sci. U S A 96:3234–3238

    Article  PubMed  CAS  Google Scholar 

  33. Li P., Yang X.L. (1999) Zn2+ differentially modulates glycine receptors versus GABA receptors in isolated carp retinal third-order neurons. Neurosci. Lett. 269:75–78

    Article  PubMed  CAS  Google Scholar 

  34. Perez-Leon J.A., Lopez-Vera E., Salceda R. (2004) Pharmacological properties of glycine transport in the frog retina. Neurochem. Res. 29:313–318

    Article  PubMed  CAS  Google Scholar 

  35. Jiang Z. and Shen W., Functional expression of glycine transporter 2 (GlyT2) in amphibian retina. ARVO online abstract, 2005

  36. Yang C.Y., Yazulla S. (1988) Light microscopic localization of putative glycinergic neurons in the larval tiger salamander retina by immunocytochemical and autoradiographical methods. J. Comp. Neurol. 272:343–357

    Article  PubMed  CAS  Google Scholar 

  37. Menger N., Pow D.V., Wassle H. (1998) Glycinergic amacrine cells of the rat retina. J. Comp. Neurol. 401:34–46

    Article  PubMed  CAS  Google Scholar 

  38. Pourcho R.G., Goebel D.J. (1985) A combined Golgi and autoradiographic study of (3H)glycine-accumulating amacrine cells in the cat retina. J. Comp. Neurol. 233:473–480

    Article  PubMed  CAS  Google Scholar 

  39. Lukasiewicz P.D., Werblin F.S. (1990) The spatial distribution of excitatory and inhibitory inputs to ganglion cell dendrites in the tiger salamander retina. J. Neurosci. 10:210–221

    PubMed  CAS  Google Scholar 

  40. Yang C.Y., Lukasiewicz P., Maguire G., Werblin F.S., Yazulla S. (1991) Amacrine cells in the tiger salamander retina: morphology, physiology, and neurotransmitter identification. J. Comp. Neurol. 312:19–32

    Article  PubMed  CAS  Google Scholar 

  41. Bloomfield S.A., Xin D. (2000) Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina. J. Physiol. 523(Pt 3)771–783

    Article  PubMed  Google Scholar 

  42. Kolb H., Cuenca N., Dekorver L. (1991) Postembedding immunocytochemistry for GABA and glycine reveals the synaptic relationships of the dopaminergic amacrine cell of the cat retina. J. Comp. Neurol. 310:267–284

    Article  PubMed  CAS  Google Scholar 

  43. Wright L.L., Macqueen C.L., Elston G.N., Young H.M., Pow D.V., Vaney D.I. (1997) The DAPI-3 amacrine cells of the rabbit retina. Vis. Neurosci. 14:473–492

    PubMed  CAS  Google Scholar 

  44. Zucker C.L., Ehinger B.E. (1998) Distribution of GABAA receptors on a bistratified amacrine cell type in the rabbit retina. J. Comp. Neurol. 393:309–319

    Article  PubMed  CAS  Google Scholar 

  45. Maple B.R., Wu S.M. (1998) Glycinergic synaptic inputs to bipolar cells in the salamander retina. J. Physiol. 506 (Pt 3):731–744

    Article  PubMed  CAS  Google Scholar 

  46. Zhang J., Jung C.S., Slaughter M.M. (1997) Serial inhibitory synapses in retina. Vis. Neurosci. 14:553–563

    Article  PubMed  CAS  Google Scholar 

  47. Roska B., Nemeth E., Werblin F.S. (1998) Response to change is facilitated by a three-neuron disinhibitory pathway in the tiger salamander retina. J. Neurosci. 18:3451–3459

    PubMed  CAS  Google Scholar 

  48. Hou M.L. and Slaughter M.M., A strychnine-insensitive inhibitory effect of glycine at the bipolar to ganglion cell synapes. FASEB Summer Research Conference, Retina Neurobiology & Visual Processing, Indian Wells, California. Poster No.71, 2006

  49. Jiang Z. and Shen W., Metabotrophic effect of glycine on bipolar cell synapse. ARVO online abstract, 2006

  50. Stone C., Pinto L.H. (1992) Receptive field organization of retinal ganglion cells in the spastic mutant mouse. J. Physiol. 456:125–142

    PubMed  CAS  Google Scholar 

  51. Zhou C., Dacheux R.F. (2005) Glycine- and GABA-activated inhibitory currents on axon terminals of rabbit cone bipolar cells. Vis. Neurosci. 22:759–767

    PubMed  Google Scholar 

  52. Eggers E.D., Lukasiewicz P.D. (2006) GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells. J. Physiol. 572:215–225

    PubMed  CAS  Google Scholar 

  53. Volgyi B., Deans M.R., Paul D.L., Bloomfield S.A. (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J. Neurosci. 24(49):11182–11192

    Article  PubMed  CAS  Google Scholar 

  54. Habermann C.J., O’Brien B.J., Wassle H., Protti D.A. (2003) AII amacrine cells express L-type calcium channels at their output synapses. J. Neurosci. 23:6904–6913

    PubMed  CAS  Google Scholar 

  55. Bieda M.C., Copenhagen D.R. (2004) N-type and L-type calcium channels mediate glycinergic synaptic inputs to retinal ganglion cells of tiger salamanders. Vis. Neurosci. 21:545–550

    Article  PubMed  Google Scholar 

  56. Yang X.L. (2004) Characterization of receptors for glutamate and GABA in retinal neurons. Prog. Neurobiol. 73:127–150

    Article  PubMed  CAS  Google Scholar 

  57. O’Dell T.J., Christensen B.N. (1989) Horizontal cells isolated from catfish retina contain two types of excitatory amino acid receptors. J. Neurophysiol. 61:1097–1109

    PubMed  CAS  Google Scholar 

  58. Lukasiewicz P.D., Roeder R.C. (1995) Evidence for glycine modulation of excitatory synaptic inputs to retinal ganglion cells. J. Neurosci. 15:4592–4601

    PubMed  CAS  Google Scholar 

  59. Rayborn M.E., Sarthy P.V., Lam D.M., Hollyfield J.G. (1981) The emergence, localization, and maturation of neurotransmitter systems during development of the retina in Xenopus laevis: II. Glycine. J. Comp. Neurol. 195(4):585–593

    Article  PubMed  CAS  Google Scholar 

  60. Smiley J.F., Basinger S.F. (1988) Somatostatin-like immunoreactivity and glycine high-affinity uptake colocalize to an interplexiform cell of the Xenopus laevis retina. J. Comp. Neurol. 274(4):608–618

    Article  PubMed  CAS  Google Scholar 

  61. Smiley J.F., Yazulla S. (1990) Glycinergic contacts in the outer plexiform layer of the Xenopus laevis retina characterized by antibodies to glycine, GABA and glycine receptors. J. Comp. Neurol. 299(3):375–388

    Article  PubMed  CAS  Google Scholar 

  62. Borges S., Wilson M. (1991) Dual effect of glycine on horizontal cells of the tiger salamander retina. J. Neurophysiol. 66(6):1993–2001

    PubMed  CAS  Google Scholar 

  63. Stockton R.A., Slaughter M.M. (1991) Depolarizing actions of GABA and glycine on amphibian retinal horizontal cells. J. Neurophysiol. 65(3):680–692

    PubMed  CAS  Google Scholar 

  64. Stone S., Witkovsky P. (1984) The actions of gamma-aminobutyric acid, glycine and their antagonists upon horizontal cells of the Xenopus retina. J. Physiol. 353:249–264

    PubMed  CAS  Google Scholar 

  65. Yang X.L., Wu S.M. (1989) Effects of prolonged light exposure, GABA, and glycine on horizontal cell responses in tiger salamander retina. J. Neurophysiol. 61(5):1025–1035

    PubMed  CAS  Google Scholar 

  66. Yang X.L., Wu S.M. (1993) Effects of GABA on horizontal cells in the tiger salamander retina. Vision Res. 33(10):1339–1344

    Article  PubMed  CAS  Google Scholar 

  67. Miller R.F., Dacheux R.F. (1975) Chloride-sensitive receptive field mechanisms in the isolated retina-eye cup of the rabbit. Brain Res. 90(2):329–334

    Article  PubMed  CAS  Google Scholar 

  68. Miller R.F., Dacheux R.F. (1983) Intracellular chloride in retinal neurons: measurement and meaning. Vision Res. 23(4):399–411

    Article  PubMed  CAS  Google Scholar 

  69. Shen Y., Chen L., Ping Y., Yang X.L. (2005) Glycine modulates the center response of ON type rod-dominant bipolar cells in carp retina. Brain Res. Bull. 67:492–497

    Article  PubMed  CAS  Google Scholar 

  70. Vardi N., Zhang L.L., Payne J.A., Sterling P. (2000) Evidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA. J. Neurosci. 20:7657–7663

    PubMed  CAS  Google Scholar 

  71. Billups D., Attwell D. (2002) Control of intracellular chloride concentration and GABA response polarity in rat retinal ON bipolar cells. J. Physiol. 545:183–198

    Article  PubMed  CAS  Google Scholar 

  72. Vu T.Q., Payne J.A., Copenhagen D.R. (2000) Localization and developmental expression patterns of the neuronal K–Cl cotransporter (KCC2) in the rat retina. J. Neurosci. 20:1414–1423

    PubMed  CAS  Google Scholar 

  73. Thoreson W.B., Bryson E.J. (2004) Chloride equilibrium potential in salamander cones. BMC Neurosci. 5:53

    Article  PubMed  CAS  Google Scholar 

  74. Thoreson W.B., Nitzan R., Miller R.F. (2000) Chloride efflux inhibits single calcium channel open probability in vertebrate photoreceptors: chloride imaging and cell-attached patch-clamp recordings. Vis. Neurosci. 17:197–206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in the authors’s laboratory was supported by the National Eye Institute R01 grant EY14161 (WS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, W., Jiang, Z. Characterization of glycinergic synapses in vertebrate retinas. J Biomed Sci 14, 5–13 (2007). https://doi.org/10.1007/s11373-006-9118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-006-9118-2

Keywords

Navigation