Skip to main content
Log in

Quantitative and qualitative characterisation of humic products with spectral parameters

  • Humic Substances in the Environment
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The application of different humic products for the treatment of soils and plants has increased in recent years. The characteristics of humic products, such as the content and composition of organic carbon and the maturity, provide valuable information which is essential for an adequate application. Such information is crucial for manufacturers, business consultants and users involved in the production, distribution and implementation of humic products. This article presents the correlation between the quantitative indicators of commercial humic products and their spectral characteristics via measurements in the ultraviolet spectrum at 300 nm, in the visible area at 445 and 665 nm and in the near-infrared spectrum at 850 nm.

Materials and methods

We evaluated humic products (liquid and solid) of different origins. Via wet combustion, the content of total organic carbon in humic products can be determined. The precipitation of humic acids from the starting solution determines the composition of the humic products in terms of humic acids (HAs) and fulvic acids (FAs). The dissolution of HAs determines their concentration by titration, while the specific extinction can be assessed via spectrophotometry via measuring the absorption of HAs spectra at the following wavelengths: 300, 465, 665 and 850 nm. The degree of aromaticity and condensation of humic products determines the optical density of the HAs via the E4/E6 ratio.

Results and discussion

The content of total organic carbon varied widely from 0.55 to 37.5% across all groups. The content of carbon in HAs, as a percentage of the total carbon in fulvic-type humic products, ranged from 1.29 to 16.00%, while in humic-type products, it ranged from 51.43 to 91.92%. The minimum value of the E4/E6 ratio was 2.97, while the maximum value was 6.35. We observed a direct relationship between the dominant type of acids in humic products and the E4/E6 ratio.

Conclusions

The optical density of HAs indicates their quality characteristics. The presented optical characteristics for humic products show that there is a direct relationship, especially between HAs/FAs and E4/E6 ratios. Measurement at 300 nm (E300) in the near-ultraviolet area and at 850 nm (E850) in the near-infrared area can increase the range of the spectral study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht R, Le Petit J, Terrom G, Périssol C (2011) Comparison between UV spectroscopy and NIRS to assess humification process during sewage sludge and green wastes co-composting. Bioresour Technol 102(6):4495–4500

    Article  CAS  Google Scholar 

  • Amran ES, Chang HY, Jusoh FB, Liew JY (2017) Minimal duration of humic acid isolation from secondary forest soil of Kelantan, Malaysia. IJAR 3(4):362–366

    Google Scholar 

  • Blondeau R (1986) Comparison of soil humic and FAs of similar molecular weight. Org Geochem 9(1):47–50

    Article  CAS  Google Scholar 

  • Canellas LP, Façanha AR (2004) Chemical nature of soil humified fractions and their bioactivity. Pesquisa Agropecuaria Brasileira 39(3):233–240

    Article  Google Scholar 

  • Chen Y, Senesi N, Schnitzer M (1977) Information provided on humic products by E465/E665 ratios. Soil Sci Soc Am J 41(2):352–358

    Article  CAS  Google Scholar 

  • Debaene G, Bartmiński P, Niedźwiecki J, Miturski T (2017) Visible and near-infrared spectroscopy as a tool for soil classification and soil profile description. Polish J Soil Sci 50(1):1–10

    Article  Google Scholar 

  • Del Vecchio R, Blough NV (2004) On the origin of the optical properties of humic substances. Environ Sci Technol 38(14):3885–3891

    Article  CAS  Google Scholar 

  • Domeizel M, Khalil A, Prudent P (2004) UV spectroscopy: a tool for monitoring humification and for proposing an index of the maturity of compost. Bioresour Technol 94(2):177–184

    Article  CAS  Google Scholar 

  • Enev V, Pospíšilová L, Klucakova M, Liptaj T, Doskocil L (2014) Spectral characterization of selected humic substances. Soil Water Res 9(1):9–17

    Article  CAS  Google Scholar 

  • Eshwar M, Srilatha M, Rekha KB, Sharma SHK (2017) Characterization of humic substances by functional groups and spectroscopic methods. Int J Curr Microbiol App Sci 6(10):1768–1774

    Article  Google Scholar 

  • Flicheva E (2015) Characteristics of soil organic matter of Bulgarian soils. LAP Lambert Academic Publishing, p 178

  • Filcheva E, Tsadilas CD (2002) Influence of clinoptilolite and compost on soil properties. Commun Soil Sci Plant Anal 33(3–4):595–607

    Article  CAS  Google Scholar 

  • Filcheva E, Ilieva R, Chakalov K, Popova T, Savov V, Hristova M (2017) Characterization of humic system in fertilizer raw materials. J Agric Sci Technol A 7(1):11–17

    Google Scholar 

  • Gonet SS, Debska B (2006) Dissolved organic carbon and dissolved nitrogen in soil under different fertilisation treatments. Plant Soil Environ 52(2):55

    Article  CAS  Google Scholar 

  • Guggenberger G (2005) Humification and mineralisation in soils. Microorganisms in soils: roles in genesis and functions:85–106

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85:221–268

    Article  CAS  Google Scholar 

  • Jing-an S, Xiaohong T, Chaofu W, Deti X (2007) Effects of conservation tillage on soil organic matter in paddy rice cultivation. Acta Ecol Sin 27(11):4434–4442

    Article  Google Scholar 

  • Kalembasa D, Becher M (2009) Properties of organic matter in chosen soils fertilised with sewage sludge. Environ Protect Eng 35(2):165–171

    CAS  Google Scholar 

  • Kondratowicz-Maciejewska K (2007) Effects of crop rotation and different fertilisation systems on the content of dissolved organic carbon in soil. Humic Subsets Ecosys 7:79–82

    Google Scholar 

  • Kondratowicz-Maciejewska K, Kobierski M, Zdrodowski T (2011) Effect of soil management practices in orchards and cultivated fields on selected properties of humic substances. Polish J Soil Sci 44(2):167–176

    Google Scholar 

  • Kononova MM (1966) Soil organic matter, its nature, origin and role in soil fertility. Pergamon Press, Oxford, pp 400–410

    Google Scholar 

  • Peacock M, Evans CD, Fenner N, Freeman C, Gough R, Jones TG, Lebron I (2014) UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation. Environ Sci Process Impacts 16(6):1445–1461

    Article  CAS  Google Scholar 

  • Polak J, Bartoszek M, Żądło M, Kos A, Sułkowski WW (2011) The spectroscopic studies of humic acid extracted from sediment collected at different seasons. Chemosphere 84(11):1548–1555

    Article  CAS  Google Scholar 

  • Pospišilova L, Fasurova N (2009) Spectroscopic characteristics HAs originated in soils and lignite. Soil Water Res 4(4):168–175

    Article  Google Scholar 

  • Schindler FV, Mercer EJ, Rice JA (2007) Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol Biochem 39(1):320–329

    Article  CAS  Google Scholar 

  • Song XY, Liu ST, Liu QH, Zhang WJ, Hu CG (2014) Carbon sequestration in soil humic products under long-term fertilisation in a wheat-maize system from North China. J Integrative Agr 13(3):562–569

    Article  CAS  Google Scholar 

  • Sparks DL, Fendorf SE, Toner CV, Carski TH (1996) Kinetic methods and measurements. Soil Sci Soc Am, Am Soc Agron 1275–1307

  • Tahiri A, Richel A, Destain J, Druart P, Thonart P, Ongena M (2016) Comprehensive comparison of the chemical and structural characterisation of landfill leachate and leonardite humic fractions. Anal Bioanal Chem 408(7):1917–1928

    Article  CAS  Google Scholar 

  • Traina SJ, Novak J, Smeck NE (1990) An ultraviolet absorbance method of estimating the percent aromatic carbon content of HAs. J Environ Qual 19(1):151–153

    Article  CAS  Google Scholar 

  • Voroney RP, Brookes PC, Beyaert RP (2008) Soil microbial biomass C, N, P, and S. Soil sampling and methods of analysis. 2nd ed. CRC Press, Boca Rato, pp 637–651

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 7(20):4702–4708

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Hristova.

Additional information

Responsible editor: Jerzy Weber

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filcheva, E., Hristova, M., Nikolova, P. et al. Quantitative and qualitative characterisation of humic products with spectral parameters. J Soils Sediments 18, 2863–2867 (2018). https://doi.org/10.1007/s11368-018-2021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2021-4

Keywords

Navigation