Skip to main content

Advertisement

Log in

Distributions and environmental drivers of archaea and bacteria in paddy soils

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to investigate the abundance, diversity, and distribution of archaea and bacteria as affected by environment parameters in paddy soils, with focus on putative functional microbial groups related to redox processes. Because there is generally a high iron content in the soil, we also want to test a hypothesis that soil iron concentration significantly affects microbial diversity and distribution.

Materials and methods

Quantitative PCR and barcoded pyrosequencing of 16S ribosomal RNA genes were employed to investigate the abundance and community composition of archaeal and bacterial communities in 27 surface paddy soil samples. Pearson’s correlation, analysis of variance, partial least squares regression, principal coordinates analysis, and structural equation models were performed for the analyses of gene copy numbers, α-diversity, β-diversity, and relative abundances of archaea and bacteria and their relationships with environmental factors.

Results and discussion

Archaeal abundance was correlated greatest with temperature, but bacterial abundance was affected mainly by soil organic matter and total nitrogen content. Soil pH and concentrations of different ions were associated with archaeal and bacterial β-diversity. The relative abundances of Euryarchaeota and Thaumarchaeota were 61.3 and 13.1% of archaea and correlated with soil pH, which may affect the availability of substrates to methanogens and ammonia oxidizers. Dominant bacterial phyla were Proteobacteria (32.4%), Acidobacteria (17.8%), Bacteroidetes (9.3%), and Verrucomicrobia (6.0%). The relative abundances of putative bacterial reducers of nitrate, Fe(III), sulfate, and sulfur, and oxidizers of ammonia, nitrite, reduced sulfur, and C1 compounds had positive, negative, or non-significant correlations with the concentrations of their substrates. Soil iron concentration was correlated only with the distributions of some putative iron-reducing bacteria.

Conclusions

In paddy soils characterized by dynamic redox processes, archaea and bacteria differ in relationships of abundance, diversity, and distribution with environmental factors. Especially, the concentrations of electron donors or acceptors can explain the distributions of some but not all the putative functional microbial groups related to redox processes. Depending on pH range, soil pH has a strong impact on microbial ecology in paddy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116

    Article  CAS  Google Scholar 

  • Barton NH, Briggs DEG, Eisen JA, Goldstein DB, Patel NH (2007) Evolution. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  Google Scholar 

  • Canfield DE, Thamdrup B, Hansen JW (1993) The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta 57:3867–3883

    Article  CAS  Google Scholar 

  • Cao P, Zhang LM, Shen JP, Zheng YM, Di HJ, He JZ (2012) Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiol Ecol 80:146–158

    Article  CAS  Google Scholar 

  • Carlson HK, Clark IC, Blazewicz SJ, Iavarone AT, Coates JD (2013) Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J Bacteriol 195:3260–3268

    Article  CAS  Google Scholar 

  • Carson JK, Gonzalez-Quinones V, Murphy DV, Hinz C, Shaw JA, Gleeson DB (2010) Low pore connectivity increases bacterial diversity in soil. Appl Environ Microbiol 76:3936–3942

    Article  CAS  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chau JF, Bagtzoglou AC, Willig MR (2011) The effect of soil texture on richness and diversity of bacterial communities. Environ Forensic 12:333–341

    Article  CAS  Google Scholar 

  • Chen XP, Zhu YG, Xia Y, Shen JP, He JZ (2008) Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol 10:1978–1987

    Article  CAS  Google Scholar 

  • Chistoserdova L, Lidstrom ME (2013) Aerobic methylotrophic prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Berlin, pp 267–285

    Chapter  Google Scholar 

  • Chu HY, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509

    Article  CAS  Google Scholar 

  • Daims H, Lucker S, Wagner M (2016) A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol 24:699–712

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Bissett A, Eldridge DJ, Maestre FT, He J-Z, Wang J-T, Hamonts K, Liu Y-R, Singh BK, Fierer N (2017) Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities. Nature Ecol Evol 1:1339–1347

    Article  Google Scholar 

  • Ding L-J, Su J-Q, Xu H-J, Jia Z-J, Zhu Y-G (2015) Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing. ISME J 9:721–734

    Article  CAS  Google Scholar 

  • Eller G, Krüger M, Frenzel P (2005) Comparing field and microcosm experiments: a case study on methano- and methylo-trophic bacteria in paddy soil. FEMS Microbiol Ecol 51:279–291

    Article  CAS  Google Scholar 

  • Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583

    Article  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  Google Scholar 

  • Garcia J-L, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6:205–226

    Article  CAS  Google Scholar 

  • Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654

    Article  Google Scholar 

  • Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, Schloter M, Griffiths RI, Prosser JI, Nicol GW (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci U S A 108:21206–21211

    Article  Google Scholar 

  • Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G (2004) Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol 186:7944–7950

    Article  CAS  Google Scholar 

  • He JZ, Hu HW, Zhang LM (2012) Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biol Biochem 55:146–154

    Article  CAS  Google Scholar 

  • Hu H-W, He J-Z (2017) Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. J Soils Sediments 17:2709–2717

    Article  CAS  Google Scholar 

  • Hu H-W, Zhang L-M, Dai Y, Di H-J, He J-Z (2013a) pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J Soils Sediments 13:1439–1449

    Article  CAS  Google Scholar 

  • Hu H-W, Zhang L-M, Yuan C-L, He J-Z (2013b) Contrasting Euryarchaeota communities between upland and paddy soils exhibited similar pH-impacted biogeographic patterns. Soil Biol Biochem 64:18–27

    Article  CAS  Google Scholar 

  • Hu H-W, Zhang L-M, Yuan C-L, Zheng Y, Wang J-T, Chen D, He J-Z (2015) The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors. Frontier Microbiol 6:938

    Google Scholar 

  • Hubert C, Voordouw G (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 73:2644–2652

    Article  CAS  Google Scholar 

  • Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898

    Article  CAS  Google Scholar 

  • Hussain Q, Liu Y, Zhang A, Pan G, Li L, Zhang X, Song X, Cui L, Jin Z (2011) Variation of bacterial and fungal community structures in the rhizosphere of hybrid and standard rice cultivars and linkage to CO2 flux. FEMS Microbiol Ecol 78:116–128

    Article  CAS  Google Scholar 

  • Ishii S, Yamamoto M, Kikuchi M, Oshima K, Hattori M, Otsuka S, Senoo K (2009) Microbial populations responsive to denitrification-inducing conditions in rice paddy soil, as revealed by comparative 16S rRNA gene analysis. Appl Environ Microbiol 75:7070–7078

    Article  CAS  Google Scholar 

  • Jiang Y, Liang Y, Li C, Wang F, Sui Y, Suvannang N, Zhou J, Sun B (2016) Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol Biochem 95:250–261

    Article  CAS  Google Scholar 

  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    Article  CAS  Google Scholar 

  • Kaster K, Grigoriyan A, Jennneman G, Voordouw G (2007) Effect of nitrate and nitrite on sulfide production by two thermophilic, sulfate-reducing enrichments from an oil field in the North Sea. Appl Microbiol Biotechnol 75:195–203

    Article  CAS  Google Scholar 

  • Ke X, Angel R, Lu Y, Conrad R (2013) Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environ Microbiol 15:2275–2292

    Article  CAS  Google Scholar 

  • Kelly DP, Wood AP, Stackebrandt E (2015) Thiobacillus, Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Ltd, London

    Google Scholar 

  • Kemnitz D, Kolb S, Conrad R (2005) Phenotypic characterization of rice cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture. Environ Microbiol 7:553–565

    Article  CAS  Google Scholar 

  • Kettler TA, Doran JW, Gilbert TL (2001) Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci Soc Am J 65:849–852

    Article  CAS  Google Scholar 

  • Kirk G (2004) The biogeochemistry of submerged soils. John Wiley & Sons, London

    Book  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  CAS  Google Scholar 

  • Koops H-P, Pommerening-Röser A (2015) The lithoautotrophic ammonia-oxidizing bacteria. In: Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118960608.bm00013

  • Kuever J, Rainey FA, Widdel F (2015) Desulfuromonas, Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Ltd, Hoboken

    Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, p 133

    Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  Google Scholar 

  • Li Y, Yu S, Strong J, Wang H (2012) Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox environments? J Soils Sediments 12:683–693

    Article  CAS  Google Scholar 

  • Li X, Zhang W, Liu T, Chen L, Chen P, Li F (2016) Changes in the composition and diversity of microbial communities during anaerobic nitrate reduction and Fe(II) oxidation at circumneutral pH in paddy soil. Soil Biol Biochem 94:70–79

    Article  CAS  Google Scholar 

  • Liesack W, Finster K (2015) Desulfuromusa. In: Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118960608.gbm01040

  • Liesack W, Schnell S, Revsbech N (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24:625–645

    Article  CAS  Google Scholar 

  • Liu X-Z, Zhang L-M, Prosser JI, He J-Z (2009) Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biol Biochem 41:687–694

    Article  CAS  Google Scholar 

  • Loeppert RH, Inskeep WP (1996) Iron. In: Sparks DL, Page AL, Helmke PA, Loeppert RH (eds) Methods of soil analysis Part 3—Chemical methods, SSSA Book Series. Soil Science Society of America, American Society of Agronomy, Madison, pp 639–664

    Google Scholar 

  • Lovley D (2013) Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 287–308

    Chapter  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction, advances in microbial physiology. Academic Press, Cambridge, pp 219–286

    Google Scholar 

  • Ma K, Qiu QF, Lu YH (2010) Microbial mechanism for rice variety control on methane emission from rice field soil. Glob Chang Biol 16:3085–3095

    Article  Google Scholar 

  • Ma B, Dai Z, Wang H, Dsouza M, Liu X, He Y, Wu J, Rodrigues JLM, Gilbert JA, Brookes PC, Xu J (2017) Distinct biogeographic patterns for archaea, bacteria, and fungi along the vegetation gradient at the continental scale in Eastern China. mSystems 2:e00174-16

    Article  Google Scholar 

  • Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Quero JL, García-Gómez M, Gallardo A, Ulrich W, Bowker MA, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, Gaitán J, Gutiérrez JR, Huber-Sannwald E, Jankju M, Mau RL, Miriti M, Naseri K, Ospina A, Stavi I, Wang D, Woods NN, Yuan X, Zaady E, Singh BK (2015) Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci U S A 112:15684–15689

    CAS  Google Scholar 

  • McDonald JH (2014) Handbook of biological statistics. Sparky House, Baltimore

    Google Scholar 

  • Muyzer G, Kuenen JG, Robertson LA (2013) Colorless sulfur Bacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Berlin, pp 555–588

    Chapter  Google Scholar 

  • Myers CR, Nealson KH (1988) Microbial reduction of manganese oxides: interactions with iron and sulfur. Geochim Cosmochim Acta 52:2727–2732

    Article  CAS  Google Scholar 

  • Neculita C-M, Zagury GJ, Bussiere B (2007) Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. J Environ Qual 36(1):16

    Article  CAS  Google Scholar 

  • Ponnamperuma F (1972) The chemistry of submerged soils. Adv Agron 24:29

    Article  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  Google Scholar 

  • Rabus R, Hansen TA, Widdel F (2013) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Berlin, pp 309–404

    Chapter  Google Scholar 

  • Ratering S, Schnell S (2001) Nitrate-dependent iron(II) oxidation in paddy soil. Environ Microbiol 3:100–109

    Article  CAS  Google Scholar 

  • Schink B (2015) Pelobacter, Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Ltd, Hoboken

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310

    Article  CAS  Google Scholar 

  • Shapleigh JP (2013) Denitrifying Prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: prokaryotic physiology and biochemistry. Springer, Berlin, pp 405–425

    Chapter  Google Scholar 

  • Siles JA, Margesin R (2016) Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors? Microb Ecol 72:207–220

    Article  Google Scholar 

  • Spieck E, Bock E (2015a) Nitrifying Bacteria. In: Bergey’s manual of systematics of archaea and Bacteria. John Wiley & Sons, Ltd, Hoboken

    Google Scholar 

  • Spieck E, Bock E (2015b) The lithoautotrophic nitrite-oxidizing bacteria. In: Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Ltd, Hoboken

    Google Scholar 

  • Stubner S, Wind T, Conrad R (1998) Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria. Syst Appl Microbiol 21:569–578

    Article  CAS  Google Scholar 

  • Sun M, Xiao T, Ning Z, Xiao E, Sun W (2015) Microbial community analysis in rice paddy soils irrigated by acid mine drainage contaminated water. Appl Microbiol Biotechnol 99:2911–2922

    Article  CAS  Google Scholar 

  • Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66:4605–4614

    Article  CAS  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. John Wiley and Sons, Inc., New York, pp 179–244

    Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Microbiol 5:316–323

    Article  CAS  Google Scholar 

  • van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B, Jetten MSM, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559

    Article  CAS  Google Scholar 

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils-effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–264

    Article  CAS  Google Scholar 

  • Wang B, Zhao J, Guo Z, Ma J, Xu H, Jia Z (2015) Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J 9:1062–1075

    Article  CAS  Google Scholar 

  • Wang JT, Zheng YM, Hu HW, Li J, Zhang LM, Chen BD, Chen WP, He JZ (2016) Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems. Sci Rep 6:19561

    Article  CAS  Google Scholar 

  • Witt C, Haefele SM (2005) Paddy soils. In: Daniel H (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 141–150

    Chapter  Google Scholar 

  • Wu MN, Qin HL, Chen Z, Wu JS, Wei WX (2011) Effect of long-term fertilization on bacterial composition in rice paddy soil. Biol Fertil Soils 47:397–405

    Article  Google Scholar 

  • Yuan YL, Conrad R, Lu YH (2009) Responses of methanogenic archaeal community to oxygen exposure in rice field soil. Environ Microbiol Rep 1:347–354

    Article  CAS  Google Scholar 

  • Yuan C, Fitzpatrick R, Mosley LM, Marschner P (2015a) Sulfate reduction in sulfuric material after re-flooding: effectiveness of organic carbon addition and pH increase depends on soil properties. J Hazard Mater 298:138–145

    Article  CAS  Google Scholar 

  • Yuan C, Mosley LM, Fitzpatrick R, Marschner P (2015b) Amount of organic matter required to induce sulfate reduction in sulfuric material after re-flooding is affected by soil nitrate concentration. J Environ Manag 151:437–442

    Article  CAS  Google Scholar 

  • Yuan C, Zhang L, Hu H, Wang J, Shen J, He J (2018) The biogeography of fungal communities in paddy soils is mainly driven by geographic distance. J Soils Sediments. https://doi.org/10.1007/s11368-018-1924-4

  • Zhang W, Ding Y, Wang L, Rui W (2007) The significance of paddy ecosystems in environmental health and sustainable development of economy in the regions around Tai Lake. Sci Technol Rev 25:24–29 (in Chinese)

    CAS  Google Scholar 

  • Zhang L, Keller J, Yuan Z (2009) Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Water Res 43:4123–4132

    Article  CAS  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045

    Article  CAS  Google Scholar 

  • Zhou J, Deng Y, Shen L, Wen C, Yan Q, Ning D, Qin Y, Xue K, Wu L, He Z, Voordeckers JW, Nostrand JDV, Buzzard V, Michaletz ST, Enquist BJ, Weiser MD, Kaspari M, Waide R, Yang Y, Brown JH (2016) Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun 7:12083

    Article  CAS  Google Scholar 

  • Zinger L, Lejon DPH, Baptist F, Bouasria A, Aubert S, Geremia RA, Choler P (2011) Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape. PLoS One 6:e19950

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020201), the National Natural Science Foundation of China (41601239), the China Postdoctoral Science Foundation (2016M600644), the “Pearl River Talents” Postdoctoral Program of Guangdong Province, the National Key Research and Development Program of China (2016YFD0800703), and the High-level Leading Talent Introduction Program of GDAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Zheng He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Huaiying Yao

Electronic supplementary material

ESM 1

(DOCX 2.24 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, CL., Zhang, LM., Wang, JT. et al. Distributions and environmental drivers of archaea and bacteria in paddy soils. J Soils Sediments 19, 23–37 (2019). https://doi.org/10.1007/s11368-018-1997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-1997-0

Keywords

Navigation