Skip to main content

Advertisement

Log in

The impact of aging on cardiac extracellular matrix

  • Review Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Age-related changes in cardiac homeostasis can be observed at the cellular, extracellular, and tissue levels. Progressive cardiomyocyte hypertrophy, inflammation, and the gradual development of cardiac fibrosis are hallmarks of cardiac aging. In the absence of a secondary insult such as hypertension, these changes are subtle and result in slight to moderate impaired myocardial function, particularly diastolic function. While collagen deposition and cross-linking increase during aging, extracellular matrix (ECM) degradation capacity also increases due to increased expression of matrix metalloproteinases (MMPs). Of the MMPs elevated with cardiac aging, MMP-9 has been extensively evaluated and its roles are reviewed here. In addition to proteolytic activity on ECM components, MMPs oversee cell signaling during the aging process by modulating cytokine, chemokine, growth factor, hormone, and angiogenic factor expression and activity. In association with elevated MMP-9, macrophage numbers increase in an age-dependent manner to regulate the ECM and angiogenic responses. Understanding the complexity of the molecular interactions between MMPs and the ECM in the context of aging may provide novel diagnostic indicators for the early detection of age-related fibrosis and cardiac dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahluwalia A, Jones MK, Szabo S, Tarnawski AS (2014) Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society 65:209–215

    CAS  Google Scholar 

  • Annoni G et al (1998) Age-dependent expression of fibrosis-related genes and collagen deposition in the rat myocardium. Mech Ageing Dev 101:57–72

    Article  CAS  PubMed  Google Scholar 

  • Antia M, Baneyx G, Kubow KE, Vogel V (2008) Fibronectin in aging extracellular matrix fibrils is progressively unfolded by cells and elicits an enhanced rigidity response. Faraday Discuss 139:229–249 discussion 309-225, 419-220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anversa P, Hiler B, Ricci R, Guideri G, Olivetti G (1986) Myocyte cell loss and myocyte hypertrophy in the aging rat heart. J Am Coll Cardiol 8:1441–1448

    Article  CAS  PubMed  Google Scholar 

  • Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM (1990) Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 67:871–885

    Article  CAS  PubMed  Google Scholar 

  • Anversa P et al (2005) Myocardial aging. Basic Res Cardiol 100:482–493

    Article  CAS  PubMed  Google Scholar 

  • Asif M et al (2000) An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proc Natl Acad Sci U S A 97:2809–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basso N, Cini R, Pietrelli A, Ferder L, Terragno NA, Inserra F (2007) Protective effect of long-term angiotensin II inhibition. Am J Phys Heart Circ Phys 293:H1351–H1358. doi:10.1152/ajpheart.00393.2007

    CAS  Google Scholar 

  • Biernacka A, Frangogiannis NG (2011) Aging and cardiac fibrosis. Aging and disease 2:158–173

    PubMed  PubMed Central  Google Scholar 

  • Bildyug NB, Voronkina IV, Smagina LV, Yudintseva NM, Pinaev GP (2015) Matrix metalloproteinases in primary culture of cardiomyocytes. Biochemistry Biokhimiya 80:1318–1326. doi:10.1134/S0006297915100132

    Article  CAS  Google Scholar 

  • Bokov AF, Lindsey ML, Khodr C, Sabia MR, Richardson A (2009) Long-lived Ames dwarf mice are resistant to chemical stressors the journals of gerontology series A. Biological sciences and medical sciences 64:819–827

    Article  PubMed  Google Scholar 

  • Bonnema DD et al (2007) Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). J Card Fail 13:530–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw AD (2009) The role of SPARC in extracellular matrix assembly. Journal of cell communication and signaling 3:239–246. doi:10.1007/s12079-009-0062-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradshaw AD, Baicu CF, Rentz TJ, Van Laer AO, Bonnema DD, Zile MR (2010) Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am J Phys Heart Circ Phys 298:H614–H622. doi:10.1152/ajpheart.00474.2009

    CAS  Google Scholar 

  • Brandes RP, Fleming I, Busse R (2005) Endothelial aging. Cardiovasc Res 66:286–294. doi:10.1016/j.cardiores.2004.12.027

    Article  CAS  PubMed  Google Scholar 

  • Bujak M, Kweon HJ, Chatila K, Li N, Taffet G, Frangogiannis NG (2008) Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384–1392

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgess ML, McCrea JC, Hedrick HL (2001) Age-associated changes in cardiac matrix and integrins. Mech Ageing Dev 122:1739–1756

    Article  CAS  PubMed  Google Scholar 

  • Burkauskiene A (2005) Age-related changes in the structure of myocardial collagen network of auricle of the right atrium in healthy persons and ischemic heart disease patients. Medicina 41:145–154

    PubMed  Google Scholar 

  • Campbell DJ et al (2012) Diastolic dysfunction of aging is independent of myocardial structure but associated with plasma advanced glycation end-product levels. PLoS One 7:e49813. doi:10.1371/journal.pone.0049813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cauwe B, Martens E, Proost P, Opdenakker G (2009) Multidimensional degradomics identifies systemic autoantigens and intracellular matrix proteins as novel gelatinase B/MMP-9 substrates. Integrative biology : quantitative biosciences from nano to macro 1:404–426

    Article  CAS  Google Scholar 

  • Cauwe B, Opdenakker G (2010) Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 45:351–423. doi:10.3109/10409238.2010.501783

    Article  CAS  PubMed  Google Scholar 

  • Cauwe B, Van den Steen PE, Opdenakker G (2007) The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 42:113–185

    Article  CAS  PubMed  Google Scholar 

  • Chiao YA et al (2011) Multi-analyte profiling reveals matrix metalloproteinase-9 and monocyte chemotactic protein-1 as plasma biomarkers of cardiac aging. Circ Cardiovasc Genet 4:455–462. doi:10.1161/CIRCGENETICS.111.959981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiao YA et al (2012) Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice. Cardiovasc Res 96:444–455. doi:10.1093/cvr/cvs275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow AK, Cena J, Schulz R (2007) Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol 152:189–205. doi:10.1038/sj.bjp.0707344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai DF, Rabinovitch PS (2009) Cardiac aging in mice and humans: the role of mitochondrial oxidative stress. Trends in cardiovascular medicine 19:213–220. doi:10.1016/j.tcm.2009.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai DF et al (2009) Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation 119:2789–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Castro Bras LE, Toba H, Baicu CF, Zile MR, Weintraub ST, Lindsey ML, Bradshaw AD (2014) Age and SPARC change the extracellular matrix composition of the left ventricle. Biomed Res Int 2014:810562. doi:10.1155/2014/810562

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 29:313–326. doi:10.1089/jir.2008.0027

    Article  CAS  Google Scholar 

  • Domenighetti AA, Wang Q, Egger M, Richards SM, Pedrazzini T, Delbridge LM (2005) Angiotensin II-mediated phenotypic cardiomyocyte remodeling leads to age-dependent cardiac dysfunction and failure. Hypertension 46:426–432. doi:10.1161/01.HYP.0000173069.53699.d9

    Article  CAS  PubMed  Google Scholar 

  • Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, Seals DR (2007) Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 100:1659–1666. doi:10.1161/01.RES.0000269183.13937.e8

    Article  CAS  PubMed  Google Scholar 

  • Eckhard U et al (2016) Active site specificity profiling of the matrix metalloproteinase family: proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses matrix biology. Journal of the International Society for Matrix Biology 49:37–60. doi:10.1016/j.matbio.2015.09.003

    Article  CAS  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174. doi:10.1038/nrc745

    Article  CAS  PubMed  Google Scholar 

  • Eghbali M et al (1989a) Localization of types I, III and IV collagen mRNAs in rat heart cells by in situ hybridization. J Mol Cell Cardiol 21:103–113

    Article  CAS  PubMed  Google Scholar 

  • Eghbali M, Eghbali M, Robinson TF, Seifter S, Blumenfeld OO (1989b) Collagen accumulation in heart ventricles as a function of growth and aging. Cardiovasc Res 23:723–729

    Article  CAS  PubMed  Google Scholar 

  • Finkel T (2015) The metabolic regulation of aging. Nat Med 21:1416–1423. doi:10.1038/nm.3998

    Article  CAS  PubMed  Google Scholar 

  • Flack EC et al (2006) Alterations in cultured myocardial fibroblast function following the development of left ventricular failure. J Mol Cell Cardiol 40:474–483

    Article  CAS  PubMed  Google Scholar 

  • Franceschi C (2007) Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutr Rev 65:S173–S176

    Article  PubMed  Google Scholar 

  • Gazoti Debessa CR, Mesiano Maifrino LB, Rodrigues de Souza R (2001) Age related changes of the collagen network of the human heart. Mech Ageing Dev 122:1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Graf K et al (1997) Myocardial osteopontin expression is associated with left ventricular hypertrophy. Circulation 96:3063–3071

    Article  CAS  PubMed  Google Scholar 

  • Gunning JF, Coleman HN 3rd (1973) Myocardial oxygen consumption during experimental hypertrophy and congestive heart failure. J Mol Cell Cardiol 5:25–38

    Article  CAS  PubMed  Google Scholar 

  • Hartog JW, Voors AA, Bakker SJ, Smit AJ, van Veldhuisen DJ (2007) Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications. Eur J Heart Fail 9:1146–1155. doi:10.1016/j.ejheart.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  • Hellstrom M, Johansson B, Engstrom-Laurent A (2006) Hyaluronan and its receptor CD44 in the heart of newborn and adult rats. The anatomical record part A. Discoveries in molecular, cellular, and evolutionary biology 288:587–592. doi:10.1002/ar.a.20332

    Article  Google Scholar 

  • Herrera MD, Mingorance C, Rodriguez-Rodriguez R, Alvarez de Sotomayor M (2010) Endothelial dysfunction and aging: an update. Ageing Res Rev 9:142–152. doi:10.1016/j.arr.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  • Horn MA et al (2012) Age-related divergent remodeling of the cardiac extracellular matrix in heart failure: collagen accumulation in the young and loss in the aged. J Mol Cell Cardiol 53:82–90. doi:10.1016/j.yjmcc.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  • Horn MA, Trafford AW (2016) Aging and the cardiac collagen matrix: novel mediators of fibrotic remodelling. J Mol Cell Cardiol 93:175–185. doi:10.1016/j.yjmcc.2015.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huet E et al (2015) Deletion of extracellular matrix metalloproteinase inducer/CD147 induces altered cardiac extracellular matrix remodeling in aging mice. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society 66:355–366

    CAS  Google Scholar 

  • Iyer RP, Chiao YA, Flynn ER, Hakala K, Cates CA, Weintraub ST, de Castro Bras LE (2016) Matrix metalloproteinase-9-dependent mechanisms of reduced contractility and increased stiffness in the aging heart. Proteomics Clin Appl 10:92–107. doi:10.1002/prca.201500038

  • Johnson JL et al (2011) A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol 31:528–535. doi:10.1161/ATVBAHA.110.219147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jugdutt BI, Jelani A, Palaniyappan A, Idikio H, Uweira RE, Menon V, Jugdutt CE (2010) Aging-related early changes in markers of ventricular and matrix remodeling after reperfused ST-segment elevation myocardial infarction in the canine model: effect of early therapy with an angiotensin II type 1 receptor blocker. Circulation 122:341–351. doi:10.1161/circulationaha.110.948190

    Article  CAS  PubMed  Google Scholar 

  • Kajstura J et al (1996) Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Phys 271:H1215–H1228

    CAS  Google Scholar 

  • Kandasamy AD, Chow AK, Ali MAM, Schulz R (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85:413–423. doi:10.1093/cvr/cvp268

    Article  CAS  PubMed  Google Scholar 

  • Kaplan P et al (2007) Effect of aging on the expression of intracellular Ca(2+) transport proteins in a rat heart. Mol Cell Biochem 301:219–226. doi:10.1007/s11010-007-9414-9

    Article  CAS  PubMed  Google Scholar 

  • Khan AS, Lynch CD, Sane DC, Willingham MC, Sonntag WE (2001) Growth hormone increases regional coronary blood flow and capillary density in aged rats. The journals of gerontology series A. Biological sciences and medical sciences 56:B364–B371

    Article  CAS  Google Scholar 

  • Khan AS, Sane DC, Wannenburg T, Sonntag WE (2002) Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system. Cardiovasc Res 54:25–35

    Article  CAS  PubMed  Google Scholar 

  • Kwak HB, Kim JH, Joshi K, Yeh A, Martinez DA, Lawler JM (2011) Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart. FASEB J 25:1106–1117. doi:10.1096/fj.10-172924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakatta EG (1994) Cardiovascular reserve capacity in healthy older humans. Aging (Milano) 6:213–223

    CAS  Google Scholar 

  • Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health. Links to Heart Disease Circulation 107:346–354

    PubMed  Google Scholar 

  • Lin J, Lopez E, Jin Y, Van Remmen H, Bauch T, Han H, Lindsey M (2008) Age-related cardiac muscle sarcopenia: combining experimental and mathematical modeling to identify mechanisms. Exp Gerontol 43:296–306

    Article  CAS  PubMed  Google Scholar 

  • Lindsey ML et al (2005) Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function. Cardiovasc Res 66:410–419

    Article  CAS  PubMed  Google Scholar 

  • Lindsey ML, Iyer RP, Jung M, De Leon-Pennell KY, Ma Y (2016) Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J Mol Cell Cardiol 91:134–140. doi:10.1016/j.yjmcc.2015.12.018

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Finkel T (2014) Aging: the blurry line between life and death. Curr Biol 24:R610–R613. doi:10.1016/j.cub.2014.05.057

    Article  CAS  PubMed  Google Scholar 

  • Liu J et al (2003) Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart. Am J Phys Heart Circ Phys 285:H2587–H2591

    CAS  Google Scholar 

  • Luther DJ et al (2012) Absence of type VI collagen paradoxically improves cardiac function, structure, and remodeling after myocardial infarction. Circ Res. doi:10.1161/CIRCRESAHA.111.252734

    Google Scholar 

  • Ma Y et al (2015) Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence. Cardiovasc Res 106:421–431. doi:10.1093/cvr/cvv128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Chiao YA, Zhang J, Manicone AM, Jin YF, Lindsey ML (2012) Matrix metalloproteinase-28 deletion amplifies inflammatory and extracellular matrix responses to cardiac aging. Microsc Microanal 18:81–90. doi:10.1017/S1431927611012220

    Article  CAS  PubMed  Google Scholar 

  • Mamuya W, Chobanian A, Brecher P (1992) Age-related changes in fibronectin expression in spontaneously hypertensive. Wistar-Kyoto, and Wistar rat hearts Circulation research 71:1341–1350

    CAS  PubMed  Google Scholar 

  • Martin-Fernandez B, Gredilla R (2016) Mitochondria and oxidative stress in heart aging Age doi:10.1007/s11357-016-9933-y

  • Mendes AB, Ferro M, Rodrigues B, Souza MR, Araujo RC, Souza RR (2012) Quantification of left ventricular myocardial collagen system in children, young adults, and the elderly. Medicina (B Aires) 72:216–220

    CAS  Google Scholar 

  • Nahrendorf M (2016) Monocyte and macrophage contributions to cardiac remodeling Journal of molecular and cellular cardiology in press (JMCC9602)

  • Nguyen NT, Yabluchanskiy A, de Castro Brás LE, Jin Y-F, Lindsey ML (2014) Aging-related changes in extracellular matrix: implications for ventricular remodeling following myocardial infarction

  • Olivetti G, Melissari M, Capasso JM, Anversa P (1991) Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circulation research 68:1560–1568

    Article  CAS  PubMed  Google Scholar 

  • Olivetti G, Ricci R, Anversa P (1987) Hyperplasia of myocyte nuclei in long-term cardiac hypertrophy in rats. J Clin Invest 80:1818–1821. doi:10.1172/JCI113278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parati G, Frattola A, Di Rienzo M, Castiglioni P, Mancia G (1997) Broadband spectral analysis of blood pressure and heart rate variability in very elderly subjects. Hypertension 30:803–808

    Article  CAS  PubMed  Google Scholar 

  • Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434. doi:10.1146/annurev.bi.64.070195.002155

    Article  CAS  PubMed  Google Scholar 

  • Riches K, Morley ME, Turner NA, O'Regan DJ, Ball SG, Peers C, Porter KE (2009) Chronic hypoxia inhibits MMP-2 activation and cellular invasion in human cardiac myofibroblasts. J Mol Cell Cardiol 47:391–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi S et al (2014) The effect of aging on the specialized conducting system: a telemetry ECG study in rats over a 6 month period. PLoS One 9:e112697. doi:10.1371/journal.pone.0112697

    Article  PubMed  PubMed Central  Google Scholar 

  • Sack MN, Finkel T (2012) Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb Perspect Biol:4. doi:10.1101/cshperspect.a013102

  • Saucerman J (2016) Computational modeling of cardiac fibroblasts and fibrosis. Journal of molecular and cellular cardiology in press (JMCC9598)

  • Sternlicht M, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strait JB, Lakatta EG (2012) Aging-associated cardiovascular changes and their relationship to heart failure. Heart failure clinics 8:143–164. doi:10.1016/j.hfc.2011.08.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61:654–666. doi:10.1016/j.molcel.2016.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swinnen M et al (2009) Absence of thrombospondin-2 causes age-related dilated cardiomyopathy. Circulation 120:1585–1597. doi:10.1161/CIRCULATIONAHA.109.863266

    Article  CAS  PubMed  Google Scholar 

  • Thomas DP, Cotter TA, Li X, McCormick RJ, Gosselin LE (2001) Exercise training attenuates aging-associated increases in collagen and collagen crosslinking of the left but not the right ventricle in the rat. Eur J Appl Physiol 85:164–169

    Article  CAS  PubMed  Google Scholar 

  • Thomas DP, McCormick RJ, Zimmerman SD, Vadlamudi RK, Gosselin LE (1992) Aging- and training-induced alterations in collagen characteristics of rat left ventricle and papillary muscle. Am J Phys 263:H778–H783

    CAS  Google Scholar 

  • Thomas DP, Zimmerman SD, Hansen TR, Martin DT, McCormick RJ (2000) Collagen gene expression in rat left ventricle: interactive effect of age and exercise training. J Appl Physiol 89:1462–1468

    CAS  PubMed  Google Scholar 

  • Toba H, de Castro Bras LE, Baicu CF, Zile MR, Lindsey ML, Bradshaw AD (2015) Secreted protein acidic and rich in cysteine facilitates age-related cardiac inflammation and macrophage M1 polarization. American Journal of Physiology Cell Physiology 308:C972–C982 doi:10.1152/ajpcell.00402.2014

  • Toba H, de Castro Bras LE, Baicu CF, Zile MR, Lindsey ML, Bradshaw AD (2016) Increased ADAMTS1 mediates SPARC-dependent collagen deposition in the aging myocardium. Am J Phys Endocrinol Metab 310:E1027–E1035. doi:10.1152/ajpendo.00040.2016

    Article  Google Scholar 

  • Toprak A, Reddy J, Chen W, Srinivasan S, Berenson G (2009) Relation of pulse pressure and arterial stiffness to concentric left ventricular hypertrophy in young men (from the Bogalusa Heart Study). Am J Cardiol 103:978–984. doi:10.1016/j.amjcard.2008.12.011

    Article  PubMed  Google Scholar 

  • Toussaint O, Royer V, Salmon M, Remacle J (2002) Stress-induced premature senescence and tissue ageing. Biochem Pharmacol 64:1007–1009

    Article  CAS  PubMed  Google Scholar 

  • Turner N (2016) Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). Journal of molecular and cellular cardiology in press (JMCC9542)

  • Vanhoutte D, Heymans S (2010) TIMPs and cardiac remodeling: ‘embracing the MMP-independent-side of the family’. J Mol Cell Cardiol 48:445–453

    Article  CAS  PubMed  Google Scholar 

  • Voorhees AP et al (2015) Building a better infarct: modulation of collagen cross-linking to increase infarct stiffness and reduce left ventricular dilation post-myocardial infarction. J Mol Cell Cardiol 85:229–239. doi:10.1016/j.yjmcc.2015.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Shah AM (2015) Age-associated pro-inflammatory remodeling and functional phenotype in the heart and large arteries. J Mol Cell Cardiol 83:101–111. doi:10.1016/j.yjmcc.2015.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI (1988) Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium, Circulation research 62:757–765

  • Wohlgemuth SE, Calvani R, Marzetti E (2014) The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J Mol Cell Cardiol 71:62–70. doi:10.1016/j.yjmcc.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  • Wu JJ et al (2013) Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep 4:913–920. doi:10.1016/j.celrep.2013.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Finkel T (2002) A role for mitochondria as potential regulators of cellular life span. Biochem Biophys Res Commun 294:245–248. doi:10.1016/S0006-291X(02)00464-3

    Article  CAS  PubMed  Google Scholar 

  • Yabluchanskiy A et al (2014) Cardiac aging is initiated by matrix metalloproteinase-9-mediated endothelial dysfunction American journal of physiology. Heart and circulatory physiology 306:H1398–H1407. doi:10.1152/ajpheart.00090.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabluchanskiy A et al (2015) Myocardial infarction superimposed on aging: MMP-9 deletion promotes M2 macrophage polarization. The journals of gerontology series A. Biological sciences and medical sciences. doi:10.1093/gerona/glv034

    Google Scholar 

  • Yamamoto D, Takai S (2009) Pharmacological implications of MMP-9 inhibition by ACE inhibitors. Curr Med Chem 16:1349–1354

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto D, Takai S, Jin D, Inagaki S, Tanaka K, Miyazaki M (2007a) Molecular mechanism of imidapril for cardiovascular protection via inhibition of MMP-9. J Mol Cell Cardiol 43:670–676

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto D, Takai S, Miyazaki M (2007b) Prediction of interaction mode between a typical ACE inhibitor and MMP-9 active site. Biochem Biophys Res Commun 354:981–984

    Article  CAS  PubMed  Google Scholar 

  • Yang Y et al (2008) Age-related differences in postinfarct left ventricular rupture and remodeling American journal of physiology. Heart and circulatory physiology 294:H1815–H1822. doi:10.1152/ajpheart.00831.2007

    Article  CAS  PubMed  Google Scholar 

  • Zweier JL, Chen CA, Druhan LJ (2011) S-glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Antioxid Redox Signal 14:1769–1775. doi:10.1089/ars.2011.3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health HL075360, HL129823, HL051971, T32HL105324, GM114833, and GM104357 and by the Biomedical Laboratory Research and Development Service of the Veterans Affairs Office of Research and Development Award 5I01BX000505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merry L. Lindsey.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meschiari, C., Ero, O.K., Pan, H. et al. The impact of aging on cardiac extracellular matrix. GeroScience 39, 7–18 (2017). https://doi.org/10.1007/s11357-017-9959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-017-9959-9

Keywords

Navigation