Skip to main content
Log in

Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Heavy metal contamination is a global issue, where the prevalent contaminants are arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb). More often, they are collectively known as “most problematic heavy metals” and “toxic heavy metals” (THMs). Their treatment through a variety of biological processes is one of the prime interests in remediation studies, where heavy metal-microbe interaction approaches receive high interest for their cost effective and ecofriendly solutions. In this review, we provide an up to date information on different microbial processes (bioremediation) for the removal of THMs. For the same, emphasis is put on oxidation-reduction, biomineralization, bioprecipitation, bioleaching, biosurfactant technology, biovolatilization, biosorption, bioaccumulation, and microbe-assisted phytoremediation with their selective advantages and disadvantages. Further, the literature briefly discusses about the various setups of cleaning processes of THMs in environment under ex situ and in situ applications. Lately, the study sheds light on the manipulation of microorganisms through genetic engineering and nanotechnology for their advanced treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86(5):1323–1336

    CAS  Google Scholar 

  • Abhilash PC, Dubey RK, Tripathi V, Gupta VK, Singh HB (2016) Plant growth-promoting microorganisms for environmental sustainability. Trends Biotechnol 34(11):847–850

    CAS  Google Scholar 

  • Achal V, Pan X, Fu Q, Zhang D (2012) Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201:178–184

    Google Scholar 

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake R, Matin A (2004) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6(8):851–860

    CAS  Google Scholar 

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremed Biodegrad 3(1):28–39

    CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    CAS  Google Scholar 

  • Akhtar MS, Chali B, Azam T (2013) Bioremediation of arsenic and lead by plants and microbes from contaminated soil. Res Plant Sci 1(3):68–73

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    CAS  Google Scholar 

  • Altun M, Sahinkaya E, Durukan I, Bektas S, Komnitsas K (2014) Arsenic removal in a sulfidogenic fixed-bed column bioreactor. J Hazard Mater 269:31–37

    CAS  Google Scholar 

  • Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol. Rev. 40(2):299–322

    CAS  Google Scholar 

  • Appel C, Ma LQ, Rhue RD, Reve W (2008) Sequential sorption of lead and cadmium in three tropical soils. Environ Pollut 155(1):132–140

    CAS  Google Scholar 

  • Apte AD, Tare V, Bose P (2006) Extent of oxidation of Cr (III) to Cr(VI) under various conditions pertaining to natural environment. J Hazard Mater 128(2–3):164–174

    CAS  Google Scholar 

  • Arias YM, Tebo BM (2003) Cr(VI) reduction by sulfidogenic and nonsulfidogenic microbial consortia. Appl Environ Microbiol 69(3):1847–1853

    CAS  Google Scholar 

  • ATSDR. 2015. Priority list of hazardous substances. http://www.atsdr.cdc.gov/spl/index.html#modalIdString_myTable2015

  • Bachate SP, Khapare RM, Kodam KM (2012) Oxidation of arsenite by two β-proteobacteria isolated from soil. Appl Microbiol Biotechnol 93(5):2135–2145

    CAS  Google Scholar 

  • Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69(6):3176–3180

    CAS  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2013) Bioremediation of arsenic-contaminated water: recent advances and future prospects. Water Air Soil Pollut 224(12):1722

    Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2016) Oxidation of arsenite to arsenate in growth medium and groundwater using a novel arsenite-oxidizing diazotrophic bacterium isolated from soil. Int Biodeterior Biodegrad 106:178–182

    CAS  Google Scholar 

  • Bano SA, Ashfaq D (2013) Role of mycorrhiza to reduce heavy metal stress. Natural Sci 5;41498

  • Barkay T, Schaefer J (2001) Metal and radionuclide bioremediation: issues, considerations and potentials. Curr Opin Microbiol 4(3):318–323

    CAS  Google Scholar 

  • Barker AV, Bryson GM (2002) Bioremediation of heavy metals and organic toxicants by composting. Sci World J 2:407–420

    CAS  Google Scholar 

  • Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223:1–12

    Google Scholar 

  • Bishop ME, Glasser P, Dong H, Arey B, Kovarik L (2014) Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals. Geochim Cosmochim Acta 133:186–203

    CAS  Google Scholar 

  • Biswas R, Vivekanand V, Saha A, Ghosh A, Sarkar A (2019) Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation. Int Biodeterior Biodegrad 136:55–62

    CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67

    CAS  Google Scholar 

  • Boriová K, Čerňanský S, Matúš P, Bujdoš M, Šimonovičová A (2014) Bioaccumulation and biovolatilization of various elements using filamentous fungus Scopulariopsis brevicaulis. Lett Appl Microbiol 59(2):217–223

    Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20(3–4):591–604

    CAS  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18(1):85

    CAS  Google Scholar 

  • Carlos FS, Giovanella P, Bavaresco J, de Souza Borges C, de Oliveira Camargo FA (2016) A comparison of microbial bioaugmentation and biostimulation for hexavalent chromium removal from wastewater. Water Air Soil Pollut 227(6):175

    Google Scholar 

  • Chang JS, Yoon IH, Lee JH, Kim KR, An J, Kim KW (2010) Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32(2):95–105

    CAS  Google Scholar 

  • Chatain V, Bayard R, Sanchez F, Moszkowicz P, Gourdon R (2005) Effect of indigenous bacterial activity on arsenic mobilization under anaerobic conditions. Environ Int 31(2):221–226

    CAS  Google Scholar 

  • Chen HR, Chen CC, Reddy AS, Chen CY, Li WR, Tseng MJ et al (2011) Removal of mercury by foam fractionation using surfactin, a biosurfactant. Int J Mol Sci 12(11):8245–8258

    CAS  Google Scholar 

  • Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33(6):745–755

    CAS  Google Scholar 

  • Chen Y, Chen Y, Li Y, Wu Y, Zeng Z, Xu R, Wang S, Li H, Zhang J (2019) Changes of heavy metal fractions during co-composting of agricultural waste and river sediment with inoculation of Phanerochaete chrysosporium. J Hazard Mater 378:120757

    CAS  Google Scholar 

  • Cheng Y, Holman HY, Lin Z (2012) Remediation of chromium and uranium contamination by microbial activity. Elements 8(2):107–112

    CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59(1):8–15

    CAS  Google Scholar 

  • Cho KS, Ryu HW, Lee IS, Choi HM (2002) Effect of solids concentration on bacterial leaching of heavy metals from sewage sludge. J Air Waste Manage Assoc 52(2):237–243

    CAS  Google Scholar 

  • Cohen RR, Ozawa T (2013) Microbial sulfate reduction and biogeochemistry of arsenic and chromium oxyanions in anaerobic bioreactors. Water Air Soil Pollut 224:1732

    Google Scholar 

  • Collinet MN, Morin D (1990) Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite, arsenate, ferrous and ferric iron. Antonie Van Leeuwenhoek 57(4):237–244

    CAS  Google Scholar 

  • Cummings DE, Caccavo F, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe (III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33(5):723–729

    CAS  Google Scholar 

  • da Silva MN, Mucha AP, Rocha AC, Teixeira C, Gomes CR, Almeida CMR (2014) A strategy to potentiate Cd phytoremediation by saltmarsh plants–autochthonous bioaugmentation. J Environ Manag 134:136–144

    Google Scholar 

  • Das S, Jean JS, Chou ML, Rathod J, Liu CC (2016) Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: implications for mitigation of arsenic contamination in paddies. J Hazard Mater 302:10–18

    CAS  Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213

    CAS  Google Scholar 

  • Dash HR, Das S (2015) Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03 (pPW-05). Int Biodeterior Biodegrad 103:179–185

    CAS  Google Scholar 

  • del Carmen Vargas-Garcia M, López MJ, Suárez-Estrella F, Moreno J (2012) Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Sci Total Environ 431:62–67

    Google Scholar 

  • Deng X, Chai L, Yang Z, Tang C, Tong H, Yuan P (2012) Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 233:25–32

    Google Scholar 

  • Deng X, Chai L, Yang Z, Tang C, Wang Y, Shi Y (2013) Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1. J Hazard Mater 248:107–114

    Google Scholar 

  • Dey S, Paul AK (2018) Influence of metal ions on biofilm formation by Arthrobacter sp. SUK 1205 and evaluation of their Cr (VI) removal efficacy. Int Biodeterior Biodegrad 132:122–131

    CAS  Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2013) Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials. World J Microbiol Biotechnol 29(12):2397–2406

    CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh U, Sahu A, Shukla R et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    CAS  Google Scholar 

  • Dronen LC, Moore AE, Kozliak EI, Seames WS (2004) An assessment of acid wash and bioleaching pre-treating options to remove mercury from coal. Fuel 83(2):181–186

    CAS  Google Scholar 

  • Eapen S, D'souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23(2):97–114

    CAS  Google Scholar 

  • Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97(23):9909–9921

    CAS  Google Scholar 

  • Essa AM, Macaskie LE, Brown NL (2005) A new method for mercury removal. Biotechnol Lett 27(21):1649–1655

    CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    CAS  Google Scholar 

  • Freedman Z, Zhu C, Barkay T (2012) Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic Aquificae. Appl Environ Microbiol 78(18):6568–6575

    CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    CAS  Google Scholar 

  • Fu B, Zhou H, Zhang R, Qiu G (2008) Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. Int Biodeterior Biodegrad 62(2):109–115

    CAS  Google Scholar 

  • Fude L, Harris B, Urrutia MM, Beveridge TJ (1994) Reduction of Cr(VI) by a consortium of sulfate-reducing bacteria (SRB III). Appl Environ Microbiol 60(5):1525–1531

    CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11(3):271–279

    CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122(2–4):109–119

    CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    CAS  Google Scholar 

  • Ganguli A, Tripathi A (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58(3):416–420

    CAS  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30

    CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its by products. Asian J Energy Environ 6(4):18

    Google Scholar 

  • Glendinning KJ, Macaskie LE, Brown NL (2005) Mercury tolerance of thermophilic Bacillus sp. and Ureibacillus sp. Biotechnol Lett 27(21):1657–1662

    CAS  Google Scholar 

  • Gu Y, Xu W, Liu Y, Zeng G, Huang J, Tan X et al (2015) Mechanism of Cr(VI) reduction by Aspergillus niger: enzymatic characteristic, oxidative stress response, and reduction product. Environ Sci Pollut Res 22(8):6271–6279

    CAS  Google Scholar 

  • Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Res 35(17):4079–4085

    CAS  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20(4):2150–2161

    CAS  Google Scholar 

  • Haroun M, Idris A, Omar SS (2007) A study of heavy metals and their fate in the composting of tannery sludge. Waste Manag 27(11):1541–1550

    CAS  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92(10):2355–2388

    CAS  Google Scholar 

  • He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T et al (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90(6):1960–1965

    CAS  Google Scholar 

  • He J, Chen X, Zhang Q, Achal V (2019) More effective immobilization of divalent lead than hexavalent chromium through carbonate mineralization by Staphylococcus epidermidis HJ2. Int Biodeterior Biodegrad 140:67–71

    CAS  Google Scholar 

  • Henriques B, Rocha LS, Lopes CB, Figueira P, Monteiro RJ, Duarte AC et al (2015) Study on bioaccumulation and biosorption of mercury by living marine macroalgae: prospecting for a new remediation biotechnology applied to saline waters. Chem Eng J 281:759–770

    CAS  Google Scholar 

  • Huang M, Zhu Y, Li Z, Huang B, Luo N, Liu C, Zeng G (2016) Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: mechanisms, efficacy, problems, and strategies. Water Air Soil Pollut 227(10):359

    Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66(9):1670–1676

    CAS  Google Scholar 

  • Jurries D 2003. Biofilters (bioswales, vegetative buffers, constructed wetlands) for storm water discharge pollution removal. State of Oregon: Department of Environmental Quality, US. http://www.deq.state.or.us/wq/stormwater/docs/nwr/biofilters.pdf

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68(10):1996–2002

    CAS  Google Scholar 

  • Kagami T, Narita T, Kuroda M, Notaguchi E, Yamashita M, Sei K et al (2013) Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase by Pseudomonas stutzeri NT-I. Water Res 47(3):1361–1368

    CAS  Google Scholar 

  • Kao AC, Chu YJ, Hsu FL, Liao VHC (2013) Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium. J Contam Hydrol 155:1–8

    CAS  Google Scholar 

  • Karunasagar D, Arunachalam J, Rashmi K, Latha JNL, Mohan PM (2003) Biosorption of inorganic and methyl mercury by a biosorbent from Aspergillus niger. World J Microbial Biotechnol 19(3):291–295

    CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res 36(20):5141–5155

    CAS  Google Scholar 

  • Katsoyiannis I, Zouboulis A, Althoff H, Bartel H (2002) As (III) removal from groundwaters using fixed-bed upflow bioreactors. Chemosphere 47(3):325–332

    CAS  Google Scholar 

  • Kaur S, Kamli MR, Ali A (2009) Diversity of arsenate reductase genes (arsC genes) from arsenic-resistant environmental isolates of E. coli. Curr Microbial 59(3):288–294

    CAS  Google Scholar 

  • Khan S, Ahmad I, Shah MT, Rehman S, Khaliq A (2009) Use of constructed wetland for the removal of heavy metals from industrial wastewater. J Environ Manag 90(11):3451–3457

    CAS  Google Scholar 

  • Khudur LS, Gleeson DB, Ryan MH, Shahsavari E, Haleyur N, Nugegoda D, Ball AS (2018) Implications of co-contamination with aged heavy metals and total petroleum hydrocarbons on natural attenuation and ecotoxicity in Australian soils. Environ Pollut 243:94–102

    CAS  Google Scholar 

  • Khulbe KC, Matsuura T (2018) Removal of heavy metals and pollutants by membrane adsorption techniques. Appl Water Sci 8(1):19

    Google Scholar 

  • Kim SD, Bae JE, Park HS, Cha DK (2005) Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans. Environ Geochem Health 27(3):229–235

    CAS  Google Scholar 

  • Kiran GS, Nishanth LA, Priyadharshini S, Anitha K, Selvin J (2014) Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsis sp. MSA13A. BMC Biotechnol 14(1):48

    Google Scholar 

  • Konovalova VV, Dmytrenko GM, Nigmatullin RR, Bryk MT, Gvozdyak PI (2003) Chromium (VI) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzym Microb Technol 33(7):899–907

    CAS  Google Scholar 

  • Kostal J, Mulchandani A, Chen W (2001) Tunable biopolymers for heavy metal removal. Macromolecules 34(7):2257–2261

    CAS  Google Scholar 

  • Kostal J, Mulchandani A, Gropp KE, Chen W (2003) A temperature responsive biopolymer for mercury remediation. Environ Sci Technol 37(19):4457–4462

    CAS  Google Scholar 

  • Kostal J, Yang R, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70(8):4582–4587

    CAS  Google Scholar 

  • Kostal J, Prabhukumar G, Lao UL, Chen A, Matsumoto M, Mulchandani A, Chen W (2005) Customizable biopolymers for heavy metal remediation. J Nanopart Res 7(4–5):517–523

    CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27(6):799–810

    CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16(7):291–300

    CAS  Google Scholar 

  • Kumar R, Bishnoi NR, Bishnoi K (2008) Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J 135(3):202–208

    CAS  Google Scholar 

  • Kumari D, Qian XY, Pan X, Achal V, Li Q, Gadd GM 2016. Microbially-induced carbonate precipitation for immobilization of toxic metals. In: Advances in applied microbiology (Vol. 94, pp. 79-108). Academic Press

  • Lampis S, Santi C, Ciurli A, Andreolli M, Vallini G (2015) Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Front Plant Sci 6:80

    Google Scholar 

  • Lara P, Morett E, Juárez K (2017) Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI). Environ Sci Pollut Res 24(33):25513–25521

    CAS  Google Scholar 

  • Lazzari L, Sperni L, Bertin P, Pavoni B (2000) Correlation between inorganic (heavy metals) and organic (PCBs and PAHs) micropollutant concentrations during sewage sludge composting processes. Chemosphere 41(3):427–435

    CAS  Google Scholar 

  • Lee KY, Kim KW, Kim SO (2010) Geochemical and microbial effects on the mobilization of arsenic in mine tailing soils. Environ Geochem Health 32(1):31–44

    CAS  Google Scholar 

  • Lee E, Han Y, Park J, Hong J, Silva RA, Kim S, Kim H (2015) Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans. J Environ Manag 147:124–131

    CAS  Google Scholar 

  • Li M, Cheng X, Guo H (2013) Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeterior Biodegrad 76:81–85

    CAS  Google Scholar 

  • Li X, Zhang L, Wang G (2014) Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. PLoS One 9(3):e92236

    Google Scholar 

  • Li Y, Zhang B, Cheng M, Li Y, Hao L, Guo H (2016) Spontaneous arsenic (III) oxidation with bioelectricity generation in single-chamber microbial fuel cells. J Hazard Mater 306:8–12

    CAS  Google Scholar 

  • Liang X, Kierans M, Ceci A, Hillier S, Gadd GM (2016) Phosphatase-mediated bioprecipitation of lead by soil fungi. Environ Microbiol 18(1):219–231

    CAS  Google Scholar 

  • Lindsay DR, Farley KJ, Carbonaro RF (2012) Oxidation of Cr III to Cr VI during chlorination of drinking water. J Environ Monit 14(7):1789–1797

    CAS  Google Scholar 

  • Liu HL, Chiu CW, Cheng YC (2003) The effects of metabolites from the indigenous Acidithiobacillus thiooxidans and temperature on the bioleaching of cadmium from soil. Biotechnol Bioeng 83(6):638–645

    CAS  Google Scholar 

  • Liu JL, Yao J, Wang F, Min N, Gu JH, Li ZF, Sunahara G, Duran R, Solevic-Knudsen T, Hudson-Edwards KA, Alakangas L (2019) Bacterial diversity in typical abandoned multi-contaminated nonferrous metal (loid) tailings during natural attenuation. Environ Pollut 247:98–107

    CAS  Google Scholar 

  • Lovley DR, Phillips EJ (1994) Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60(2):726–728

    CAS  Google Scholar 

  • Macur RE, Wheeler JT, McDermott TR, Inskeep WP (2001) Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35(18):3676–3682

    CAS  Google Scholar 

  • Mahbub KR, Krishnan K, Megharaj M, Naidu R (2016) Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil. Chemosphere 144:330–337

    CAS  Google Scholar 

  • Mahbub KR, Krishnan K, Andrews S, Venter H, Naidu R, Megharaj M (2017) Bio-augmentation and nutrient amendment decrease concentration of mercury in contaminated soil. Sci Total Environ 576:303–309

    CAS  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653

    CAS  Google Scholar 

  • Møller AK, Barkay T, Hansen MA, Norman A, Hansen LH, Sørensen SJ et al (2014) Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine. FEMS Microbiol Ecol 87(1):52–63

    Google Scholar 

  • Montazer-Rahmati MM, Rabbani P, Abdolali A, Keshtkar AR (2011) Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. J Hazard Mater 185(1):401–407

    CAS  Google Scholar 

  • Moore MJ, Distefano MD, Zydowsky LD, Cummings RT, Walsh CT (1990) Organomercurial lyase and mercuric ion reductase: nature's mercury detoxification catalysts. Acc Chem Res 23(9):301–308

    CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133(2):183–198

    CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF, James S, Bennett HPJ (1999) Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environ Sci Technol 33(21):3812–3820

    CAS  Google Scholar 

  • Myers CR, Carstens BP, Antholine WE, Myers JM (2000) Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88(1):98–106

    CAS  Google Scholar 

  • Naik UC, Srivastava S, Thakur IS (2012) Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium. Environ Sci Pollut Res 19(7):3005–3014

    CAS  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Google Scholar 

  • Osborne FH, Ehrlich HL (1976) Oxidation of arsenite by a soil isolate of Alcaligenes. J Appl Bacteriol 41(2):295–305

    CAS  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    CAS  Google Scholar 

  • Ozturk S, Kaya T, Aslim B, Tan S (2012) Removal and reduction of chromium by Pseudomonas spp. and their correlation to rhamnolipid production. J Hazard Mater 231:64–69

    Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654

    Google Scholar 

  • Palermo, M., Maynord, S., Miller, J., Reible, D. 1998. “Guidance for in-situ subaqueous capping of contaminated sediments,” EPA 905-B96–004, Great Lakes National Program Office, Chicago, IL

  • Paré T, Dinel H, Schnitzer M (1999) Extractability of trace metals during co-composting of biosolids and municipal solid wastes. Biol Fertil Soils 29(1):31–37

    Google Scholar 

  • Park D, Yun YS, Kim JY, Park JM (2008) How to study Cr(VI) biosorption: use of fermentation waste for detoxifying Cr(VI) in aqueous solution. Chem Eng J 136(2–3):173–179

    CAS  Google Scholar 

  • Park J, Han Y, Lee E, Choi U, Yoo K, Song Y, Kim H (2014) Bioleaching of highly concentrated arsenic mine tailings by Acidithiobacillus ferrooxidans. Sep Purif Technol 133:291–296

    CAS  Google Scholar 

  • Parks JM, Guo H, Momany C, Liang L, Miller SM, Summers AO, Smith JC (2009) Mechanism of Hg− C protonolysis in the organomercurial lyase MerB. J American Chem Soc 131(37):13278–13285

    CAS  Google Scholar 

  • Pathak A, Dastidar MG, Sreekrishnan TR (2009) Bioleaching of heavy metals from sewage sludge: a review. J Environ Manag 90(8):2343–2353

    CAS  Google Scholar 

  • Prabhakaran P, Ashraf MA, Aqma WS (2016) Microbial stress response to heavy metals in the environment. RSC Adv 6(111):109862–109877

    CAS  Google Scholar 

  • Prasad KS, Ramanathan AL, Paul J, Subramanian V, Prasad R (2013) Biosorption of arsenite (As+3) and arsenate (As+5) from aqueous solution by Arthrobacter sp. biomass. Environ Technol 34(19):2701–2708

    CAS  Google Scholar 

  • Pure Earth 2015 The new top six toxic threats: a priority list for remediation, world’s worst pollution problems report. http://www.worstpolluted.org/docs/WWPP_2015_Final.pdf

  • Qian J, Wei L, Liu R, Jiang F, Hao X, Chen GH (2016) An exploratory study on the pathways of Cr(VI) reduction in sulfate-reducing up-flow anaerobic sludge bed (UASB) reactor. Sci Rep 6:23694

    CAS  Google Scholar 

  • Qian X, Fang C, Huang M, Achal V (2017) Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. J Clean Prod 164:198–208

    CAS  Google Scholar 

  • Qu M, Chen J, Huang Q, Chen J, Xu Y, Luo J et al (2018) Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields. Int Biodeterior Biodegrad 128:41–47

    CAS  Google Scholar 

  • Rahman Z, Singh VP (2019) The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess 191(7):419

    Google Scholar 

  • Rahman Z, Thomas L, Singh VP (2019) Biosorption of heavy metals by a lead (Pb) resistant bacterium, Staphylococcus hominis strain AMB-2. J Basic Microbiol 59(5):477–486

    CAS  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160

    CAS  Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21(3):321–332

    Google Scholar 

  • Ramírez-Ramírez R, Calvo-Méndez C, Ávila-Rodríguez M, Lappe P, Ulloa M, Vázquez-Juárez R, Gutiérrez-Corona JF (2004) Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie Van Leeuwenhoek 85(1):63–68

  • Ranjan D, Talat M, Hasan SH (2009) Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J Hazard Mater 166(2–3):1050–1059

    CAS  Google Scholar 

  • Ravenscroft P, Brammer H, Richards KS (2009) Arsenic pollution: a global synthesis. Wiley Blackwell, UK

    Google Scholar 

  • Rhine ED, Phelps CD, Young LY (2006) Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8(5):899–908

    CAS  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W. (2003) Bioleaching review part A. Appl Microbiol Biotechnol 1;63(3):239–248.

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93(8):3182–3187

    CAS  Google Scholar 

  • Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C (2011) Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 11(1):82

    CAS  Google Scholar 

  • Saeed A, Iqbal M (2003) Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Res 37(14):3472–3480

    CAS  Google Scholar 

  • Sağlam N, Say R, Denizli A, Patır S, Arıca MY (1999) Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysosporium mycelium. Process Biochem 34(6–7):725–730

    Google Scholar 

  • Saha B, Orvig C (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev 254(23–24):2959–2972

    CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66(1):92–97

    CAS  Google Scholar 

  • Sarı A, Uluozlü ÖD, Tüzen M. (2011) Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Chem Eng J 167(1):155–61.

  • Sayer JA, Cotter-Howells JD, Watson C, Hillier S, Gadd GM (1999) Lead mineral transformation by fungi. Curr Biol 9(13):691–694

    CAS  Google Scholar 

  • Seidel H, Mattusch J, Wennrich R, Morgenstern P, Ondruschka J (2002) Mobilization of arsenic and heavy metals from contaminated sediments by changing the environmental conditions. Acta Biotechnol 22(1–2):153–160

    CAS  Google Scholar 

  • Shen H, Niu Q, Xu M, Rui D, Xu S, Feng G et al (2016) Factors affecting arsenic methylation in arsenic-exposed humans: a systematic review and meta-analysis. Int J Environ Res Public Health 13(2):205

    Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170

    CAS  Google Scholar 

  • Shukla, S.K., Mangwani, N., Karley, D. and Rao, T.S., 2017. Bacterial biofilms and genetic regulation for metal detoxification. In Handbook of metal-microbe interactions and bioremediation (p. 317). CRC Press

  • Shukla SK, Hariharan S, Rao TS (2020) Uranium bioremediation by acid phosphatase activity of Staphylococcus aureus biofilms: can a foe turn a friend? J Hazard Mater 384:121316

    Google Scholar 

  • Singh J, Kalamdhad AS (2013) Assessment of bioavailability and leachability of heavy metals during rotary drum composting of green waste (Water hyacinth). Ecol Eng 52:59–69

    Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397

    CAS  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011a) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480(1–2):1–9

    CAS  Google Scholar 

  • Singh R, Kumar A, Kirrolia A, Kumar R, Yadav N, Bishnoi NR, Lohchab RK (2011b) Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresour Technol 102(2):677–682

    CAS  Google Scholar 

  • Sisti F, Allegretti P, Donati E (1996) Reduction of dichromate by Thiobacillus ferrooxidans. Biotechnol Lett 18(12):1477–1480

    CAS  Google Scholar 

  • Smith WL, Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol 88(6):983–991

    CAS  Google Scholar 

  • Soni SK, Singh R, Awasthi A, Kalra A (2014) A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Environ Sci Pollut Res 21(3):1971–1979

    CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48(4):427–435

    CAS  Google Scholar 

  • Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151(1):1–8

    CAS  Google Scholar 

  • Srivastava S, Verma PC, Singh A, Mishra M, Singh N, Sharma N, Singh N (2012) Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal. Appl Microbiol Biotechnol 95(5):1275–1291

    CAS  Google Scholar 

  • Sultana MY, Akratos CS, Pavlou S, Vayenas DV (2014) Chromium removal in constructed wetlands: a review. Int Biodeterior Biodegrad 96:181–190

    Google Scholar 

  • Sure S, Ackland ML, Gaur A, Gupta P, Adholeya A, Kochar M (2016) Probing Synechocystis-arsenic interactions through extracellular nanowires. Front Microbiol 7:1134

    Google Scholar 

  • Tang J, Zhang J, Ren L, Zhou Y, Gao J, Luo L, Yang Y, Peng Q, Huang H, Chen A (2019) Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution. J Environ Manag 242:121–130

    CAS  Google Scholar 

  • Tang J, Zhang L, Zhang J, Ren L, Zhou Y, Zheng Y, Luo L, Yang Y, Huang H, Chen A (2020) Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci Total Environ 701:134751

    CAS  Google Scholar 

  • Telling ND, Coker VS, Cutting RS, Van Der Laan G, Pearce CI, Pattrick RAD et al (2009) Remediation of Cr(VI) by biogenic magnetic nanoparticles: an X-ray magnetic circular dichroism study. Appl Phys Lett 95(16):163701

    Google Scholar 

  • Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399

    CAS  Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT, Karlson U (1989) Volatilization of selenium by Alternaria alternata. Appl Environ Microbiol 55(6):1406–1413

    CAS  Google Scholar 

  • UNIDO. 2003. Technical information on industrial processes pollutants in tannery effluent: international scenario on environmental regulations and compliance, Vienna, Austria

  • Urík M, Čerňanský S, Ševc J, Šimonovičová A, Littera P (2007) Biovolatilization of arsenic by different fungal strains. Water Air Soil Pollut 186(1–4):337–342

    Google Scholar 

  • USEPA. 1998. An analysis of composting as an environmental remediation technology (EPA530-R-98-008)

  • USEPA. 1999. Storm water technology fact sheet - bioretention. USEPA

  • Valenzuela C, Campos VL, Yañez J, Zaror CA, Mondaca MA (2009) Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile. Bull Environ Contam Toxicol 82(5):593–596

    CAS  Google Scholar 

  • Vázquez S, Hevia A, Moreno E, Esteban E, Peñalosa JM, Carpena RO (2011) Natural attenuation of residual heavy metal contamination in soils affected by the Aznalcóllar mine spill, SW Spain. J Environ Manag 92(8):2069–2075

    Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44(3):301–316

    CAS  Google Scholar 

  • Velásquez-Riaño M, Benavides-Otaya HD (2016) Bioremediation techniques applied to aqueous media contaminated with mercury. Crit Rev Biotechnol 36(6):1124–1130

    Google Scholar 

  • Velgosová O, Kaduková J, Marcinčáková R, Palfy P, Trpčevská J (2013) Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni–Cd batteries. Waste Manag 33(2):456–461

    Google Scholar 

  • Vendruscolo F, da Rocha Ferreira GL, Antoniosi Filho NR (2017) Biosorption of hexavalent chromium by microorganisms. Int Biodeterior Biodegrad 119:87–95

    CAS  Google Scholar 

  • Virkutyte J, Sillanpää M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289(1–3):97–121

    CAS  Google Scholar 

  • Wagner-Döbler I (2003) Pilot plant for bioremediation of mercury-containing industrial wastewater. Appl Microbiol Biotechnol 62(2–3):124–133

    Google Scholar 

  • Wagner-Döbler, I. 2013. Current research for bioremediation of mercury. Bioremediation of mercury: current research and industrial applications 1À16

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451

    CAS  Google Scholar 

  • Wang S, Mulligan CN (2006) Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. J Hazard Mater 138(3):459–470

    CAS  Google Scholar 

  • Wang S, Mulligan CN (2009) Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings. Process Biochem 44(3):296–301

    CAS  Google Scholar 

  • Wang S, Zhao X (2009) On the potential of biological treatment for arsenic contaminated soils and groundwater. J Environ Manag 90(8):2367–2376

    CAS  Google Scholar 

  • Wang Q, Kim D, Dionysiou DD, Sorial GA, Timberlake D (2004) Sources and remediation for mercury contamination in aquatic systems—a literature review. Environ Pollut 131(2):323–336

    Google Scholar 

  • Wang YS, Pan ZY, Lang JM, Xu JM, Zheng YG (2007) Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans.J Hazard Mater 147(1–2):319–24.

  • Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012) Remediation of mercury contaminated sites–a review. J Hazard Mater 221:1–18

    Google Scholar 

  • Wang T, Sun H, Mao H, Zhang Y, Wang C, Zhang Z et al (2014) The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by NovoGro biostimulation and changes of soil microbial community. J Hazard Mater 278:483–490

    CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321(1–2):385–408

    CAS  Google Scholar 

  • WHO 2010. Preventing disease through healthy environments. Action is needed on chemicals of major public health concern. https://www.who.int/ipcs/features/10chemicals_en.pdf?ua=1

  • Wielinga B, Mizuba MM, Hansel CM, Fendorf S (2001) Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ Sci Technol 35(3):522–527

    CAS  Google Scholar 

  • Wong JWC, Selvam A (2006) Speciation of heavy metals during co-composting of sewage sludge with lime. Chemosphere 63(6):980–986

    CAS  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174(1–3):1–8

    CAS  Google Scholar 

  • Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. J Biosci Bioeng 118(1):1–9

    CAS  Google Scholar 

  • Yan R, Yang F, Wu Y, Hu Z, Nath B, Yang L, Fang Y (2011) Cadmium and mercury removal from non-point source wastewater by a hybrid bioreactor. Bioresour Technol 102(21):9927–9932

    CAS  Google Scholar 

  • Yewalkar SN, Dhumal KN, Sainis JK (2007) Chromium (VI)-reducing Chlorella spp. isolated from disposal sites of paper-pulp and electroplating industry. J Appl Phycol 19(5):459–465

    CAS  Google Scholar 

  • Yin K, Wang Q, Lv M, Chen L (2019) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563

    CAS  Google Scholar 

  • Zahoor A, Rehman A (2009) Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 21(6):814–820

    Google Scholar 

  • Zhang K, Li F (2011) Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Appl Microbiol Biotechnol 90(3):1163–1169

    CAS  Google Scholar 

  • Zhang J, Zhang X, Ni Y, Yang X, Li H (2007) Bioleaching of arsenic from medicinal realgar by pure and mixed cultures. Process Biochem 42(9):1265–1271

    CAS  Google Scholar 

  • Zhang Z, Yin N, Du H, Cai X, Cui Y (2016) The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria. Chemosphere 151:108–115

    CAS  Google Scholar 

  • Zhu N, Zhang L, Li C, Cai C (2003) Recycling of spent nickel–cadmium batteries based on bioleaching process. Waste Manag 23(8):703–708

    CAS  Google Scholar 

  • Zhu X, Yu H, Jia H, Liu J, Li X (2013) Solid phase extraction of trace copper in water samples via modified corn silk as a novel biosorbent with detection by flame atomic absorption spectrometry. Anal Methods 5(17):4460–4466

    CAS  Google Scholar 

  • Zouboulis AI, Katsoyiannis IA (2005) Recent advances in the bioremediation of arsenic-contaminated groundwaters. Environ Int 31(2):213–219

    CAS  Google Scholar 

Download references

Acknowledgments

Fellowship to ZR by Council of Scientific and Industrial Research (CSIR) is gratefully acknowledged. Authors are very thankful to Dr. Lebin Thomas for their helpful feedback on the early drafts of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeeshanur Rahman.

Additional information

Responsible editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, Z., Singh, V.P. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environ Sci Pollut Res 27, 27563–27581 (2020). https://doi.org/10.1007/s11356-020-08903-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08903-0

Keywords

Navigation