Skip to main content

Advertisement

Log in

Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Heavy metal pollution is one of the serious problems and contaminates the environment by different means with the blow of industries in several countries. Different techniques like physical, chemical, and biological have been used for removal of heavy metal contaminants from the environment. Some of these have limitations such as cost, time consumption, logistical problems, and mechanical involvedness. Nowadays, in situ immobilization of metals, phytoremediation and biological techniques turned out to be best solution for elimination of metal(loid) s from the soil. Here, we reviewed the different remediation techniques for extraction of heavy metals from soil and especially highlighting in situ immobilization technique. The aim of remediation efforts at the contaminant site is to restrict the heavy metal to enter in the environment, food chain, and exposure to humans beings. The type of method used at a given site depends on the various factors like natural processes take place at the contaminated site, soil type, type of chemicals, and the depth of contaminated site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abioye OP, Oyewole OA, Oyeleke SB, Adeyemi MO, Orukotan AA (2018) Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms. Brazil J Biol Sci 5(9):25–32

    Google Scholar 

  • Achal V, Kumari D, Pan X (2011) Bioremediation of chromium contaminated soil by a brown-rot fungus, Gloeophyllum sepiarium. Res J Microbiol 6:166–171

    CAS  Google Scholar 

  • Ahmed KS, Panwar BS, Gupta SP (2001) Phytoremediation of cadmium contaminated soil by Brassica species. Acta Agron Hung 49:351–360

    CAS  Google Scholar 

  • Akar T, Tunali S, Kiran I (2005) Botrytis cinerea as a new fungal biosorbent for removal of Pb (II) from aqueous solutions. Biochem Eng J 25:227–235

    CAS  Google Scholar 

  • Al-Garni SM, Ghanem KM, Ibrahim AS (2010) Biosorption of mercury by capsulated and slime layer forming Gram–ve bacilli from an aqueous solution. Afr J Biotechnol 9:6413–6421

    CAS  Google Scholar 

  • Amare E, Kebede F, Berihu T, Mulat W (2017) Field based investigation on phytoremediation potentials of Lemna minor and Azolla filiculoides in tropical, semiarid regions: case of Ethiopia. Int J Phytoremdiation 20:965–972

    Google Scholar 

  • Angelova V, Ivanova R, Todorov G, Ivanovi K (2008) Heavy metal uptake by rape. Commun Soil Sci Pl Anal 39:344–357

    CAS  Google Scholar 

  • Ashokkumar P, Loashini VM, Bhavya V (2017) Effect of pH, temperature and biomass on biosorption of heavy metals by Sphaerotilus natans. Int J Microbiol Mycol 6:32–38

    Google Scholar 

  • Ashruta GA, Nanoty V, Bhalekar U (2014) Biosorption of heavy metals from aqueous solution using bacterial EPS. Int J Life Sci 2:373–377

    Google Scholar 

  • Aulakh MS, Singh G (2008) Integrated nutrient management: experience from South Asia. In: Aulakh MS, Grant CA (eds) Integrated nutrient management for sustainable crop production. Routledge, New York, pp 285–326

    Google Scholar 

  • Azad AS, Sekhon GS, Arora BR (1986) Distribution of cadmium, nickel and cobalt in sewage-water irrigated soils. J Indian Soc Soil Sci 34:619–621

    CAS  Google Scholar 

  • Aziz MA, Ashour A, Madbouly H, Melad AS, El Kerikshi K (2017) Investigations on green preparation of heavy metal saponin complexes. J Water Environ Nanotechnol 2:103–111

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metal elements: a review of their distribution, ecology, and phyto-chemistry. Bio-recovery 1:81–126

    CAS  Google Scholar 

  • Bauddh K, Singh RP (2009) Genotypic differences in nickel toxicity in Indian mustard (Brassica juncea). Pollut Res 28:699–704

    CAS  Google Scholar 

  • Bauddh K, Singh RP (2012) Growth, tolerance efficiency and phytoremediation potential of Ricinus communis (L.) and Brassica juncea (L.) in salinity and drought affected cadmium contaminated soil. Ecotoxicol Environ Saf 85:13–22

    CAS  Google Scholar 

  • Bello AO, Tawabinib BS, Khalilc AB, Bolandd CR, Salehe TA (2018) Phyto-remediation of cadmium, lead and nickel contaminated water by Phragmites australis in hydroponic systems. Eco Engg 120:126–133

    Google Scholar 

  • Bhadkariya RK, Jain VK, Chak GPS, Gupta SK (2014) Remediation of cadmium by Indian mustard (Brassica Juncea) from cadmium contaminated soil: a Phytoextraction study. Int J Environ 3:229–237

    Google Scholar 

  • Bilgin M, Tulun S (2016) Removal of heavy metals (cu, cd and Zn) from contaminated soils using EDTA and FeCl3. Global NEST J 18:98–107

    CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajana R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils to mobilize or to immobilize? J Hazard Mater 26:141–166

    Google Scholar 

  • Bosecker K (2001) Microbial leaching in environmental clean-up programmes. Hydrometallurgy 59:245–248

    CAS  Google Scholar 

  • Boyd RS (2004) Ecology of metal hyperaccumulation. New Phytol 162:563–567

    Google Scholar 

  • Cameselle C, Gouveia S (2019) Phytoremediation of mixed contaminated soil enhanced with electric current. J Hazardous Mat 361:95–102

    CAS  Google Scholar 

  • Chandrasekaran A, Ravisankar R, Harikrishnan N, Satapathy KK, Prasad MVR, Kanagasabapathy KV (2015) Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India—spectroscopical approach. Spectrochim Acta A 137:589–600

    CAS  Google Scholar 

  • Chang JS, Kim YH, Kim KW (2008) The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold–silver mines in the Republic of Korea. Appl Microbiol Biotechnol 80:155–165

    CAS  Google Scholar 

  • Chatterjee S, Chatterjee CN, Dutta S (2012) Bioreduction of chromium (VI) to chromium (III) by a novel yeast strain Rhodotorula mucilaginosa (MTCC9315). Afr J Biotechnol 1:14920–14929

    Google Scholar 

  • Collins VE, Stotzky G (1989) Factors affecting toxicity of heavy metals to microbes. In: Metal Ions Bact. Wiley, New York, pp 31–90

    Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    CAS  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10:471–477

    CAS  Google Scholar 

  • Dhaliwal SS, Sadana US, Manchanda JS, Dhadli HS (2009) Biofortification of wheat grains with zinc (Zn) and iron (Fe) in Typic Ustochrept soils of Punjab. Indian J Fert 5(13–16):19–20

    Google Scholar 

  • Dhaliwal SS, Sadana US, Manchanda JS, Kumar D (2013) Fertifortification of maize cultivars with Zn in relation to food security and alleviation of Zn malnutrition. Indian J Fert 9:24–30

    CAS  Google Scholar 

  • Dhaliwal SS, Naresh RK, Agniva-Mandal WMK, Gupta Raj K, Singh R, Dhaliwal MK (2019) Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: a review. J Plant Nutr. https://doi.org/10.1080/01904167.2019.1659337

    CAS  Google Scholar 

  • Dheri GS, Brar MS, Malhi SS (2007) Heavy metal concentration of sewage contaminated water and its impact on underground water, soil and crop plants in alluvial soils of north western India. Commun Soil Sci Plant Anal 38:1353–1370

    CAS  Google Scholar 

  • Dixit R, Wasiulah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    CAS  Google Scholar 

  • Donmez G, Aksu Z (2001) Bioaccumulation of copper (II) and nickel (II) by the non-adapted and adapted growing Candida sp. Water Res 35:1425–1434

    CAS  Google Scholar 

  • Dursun AY, Uslu G, Cuci Y, Aksu Z (2003) Bioaccumulation of copper (II), lead (II) and chromium (VI) by growing Aspergillus niger. Process Biochem 38:1647–1651

    CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • Farid M, Ali S, Ishaque W, Shakoor MB, Niazi NK, Bibi I, Dawood M, Gill RA, Abbas F (2015) Exogenous application of ethylene diamine tetra acetic acid enhanced phytoremediation of cadmium by Brassica napus L. Int J Environ Sci Technol 12:3981–3992

    CAS  Google Scholar 

  • Fasani E, Manara A, Martini F, Furini A, Dal CG (2017) The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant Cell Environ 41:1201–1232

    Google Scholar 

  • Fu QY, Li S, Zhu YH (2012) Biosorption of copper (II) from aqueous solution by mycelial pellets of Rhizopus oryzae. Afr J Biotechnol 11:1403–1411

    CAS  Google Scholar 

  • Galal TM, Gharib FA, Ghazi SM, Mansour KH (2017) Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: a phytoremediation approach. Int J Phytoremed 19:992–999

    CAS  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metals oil bioremediation. Eur J Miner Process Environ Prot 3:58–66

    Google Scholar 

  • Ghnaya AB, Charles G, Hourmant A, Hamida JB, Branchard M (2009) Physiological behaviour of four rapeseed cultivars (Brassica napus L.) submitted to metal stress. Comptes Rendus Biologies 332:363–370

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its by products. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Goswami S, Das S (2015) A study on cadmium phytoremediation potential of Indian mustard, Brassica juncea. Int J Phytoremed 17:583–588

    CAS  Google Scholar 

  • Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52:265–275

    CAS  Google Scholar 

  • Hodson ME, Valsami-Jones E, Cotter-Howells JD (2000) Bone meal additions as a remediation treatment for metal contaminated soil. Environ Sci Technol 34:3501–3507

    CAS  Google Scholar 

  • Huan L, Haixia Z, Longhua W, Anna L, Fang-Jie Z, Wenzhong X (2017) Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 15:687–698

    Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soils. Role of synthetic chelates in lead phytoremediation. Environ Sci Technol 31:800–805

    CAS  Google Scholar 

  • Huang D, Hu C, Zeng G, Cheng M, Xu P, Gong X, Wang R, Xue W (2016) Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci. Total Environ 574:1599–1610

    Google Scholar 

  • Institute of Environmental Conservation and Research INECAR (2000) Position paper against mining in Rapu-Rapu, Published by INECAR, Ateneo de Naga University, Philippines

  • Iqbal M, Bakht J, Shafi M, Ullah R (2012) Effect of heavy metal uptake and gene expression in different Brassica species. Afri J Biotech1 1:7649–7658

    Google Scholar 

  • Ishikawa S, Noriharu AE, Murakami M, Wagatsuma T (2006) Is Brassica juncea a suitable plant for phytoremediation of cadmium in soils with moderately low cadmium contamination? – possibility of using other plant species for Cd-phytoextraction. Soil Sci Plant Nutr 52:32–42

    CAS  Google Scholar 

  • Jafari SA, Cheraghi S, Mirbakhsh M, Mirza R, Maryamabadi A (2015) Employing response surface methodology for optimization of mercury bioremediation by Vibrio parahaemolyticus PG02 in coastal sediments of Bushehr, Iran. Clean 43:118–126

    CAS  Google Scholar 

  • Javaid NMA, Bajwa KUR, Manzoor RA (2011) Biosorption of heavy metals by pretreatment of biomass of Aspergillus niger. Pak J Bot 43:419–425

    CAS  Google Scholar 

  • Jinadasa N, Collins D, Holford P, Milham PJ, Conroy JP (2016) Reactions to cadmium stress in a cadmium-tolerant variety of cabbage (Brassica oleracea L.): is cadmium tolerance necessarily desirable in food crops? Environ Sci Pollut Res 23:5296–5306

    CAS  Google Scholar 

  • John MK, Vanlaerhoven CJ, Chukwuma CS (2009) Factors affecting plant uptake and phytotoxicity of cadmium added to soils. Environ Sci Technol 6:1005–1009

    Google Scholar 

  • Kader J, Sannasi P, Othman O, Ismail BS, Salmijaj S (2007) Removal of Cr (VI) from aqueous solutions by growing and non-growing populations of environmental bacterial consortia. Global J Environ Res 1:12–17

    Google Scholar 

  • Karakagh RM, Chorom M, Motamedi H, Kalkhajeh YK, Oustan S (2012) Biosorption of cd and Ni by inactivated bacteria isolated from agricultural soil treated with sewage sludge. Ecohydrol Hydrobiol 12:191–198

    CAS  Google Scholar 

  • Kaur R, Bhatti SS, Singh S, Singh J, Singh S (2018) Phytoremediation of heavy metals using cotton plant: a field analysis. Bull Environ Contam Toxicol 101:637–643

    CAS  Google Scholar 

  • Kim SY, Kim JH, Kim CJ, Oh DK (1996) Metal adsorption of the polysaccharide produced from Methylo bacterium organophilum. Biotechnol Lett 18:1161–1164

    CAS  Google Scholar 

  • Kim SO, Moon SH, Kim KW (2001) Removal of heavy metals from soils using enhanced electro kinetic soil processing. Water Air Soil Pollut 125:259–272

    CAS  Google Scholar 

  • Kim IH, Choi JH, Joo JO, Kim YK, Choi JW, Oh BK (2015) Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J Microbiol Biotechnol 25:1542–1546

    CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloids oil and sediment pollution. Biotechnol Adv 27:799–810

    CAS  Google Scholar 

  • Ksheminska HP, Honchar TM, Gayda GZ, Gonchar MV (2006) Extra-cellular chromate-reducing activity of the yeast cultures. Cent Eur J Biol 1:137–149

    CAS  Google Scholar 

  • Ksheminska H, Fedorovych D, Honchar T, Ivash M, Gonchar M (2008) Yeast tolerance to chromium depends on extracellular chromate reduction and Cr (III) chelation. Food Technol Biotechnol 46:419–426

    CAS  Google Scholar 

  • Kumar R, Bhatia D, Singh R, Rani S, Bishnoi NR (2011) Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column. Int Biodeterior Biodegradation 65:1133–1139

    CAS  Google Scholar 

  • Kumaran NS, Sundaramanicam A, Bragadeeswaran S (2011) Adsorption studies on heavy metals by isolated cyanobacterial strain (nostoc sp.) from uppanar estuarine water, southeast coast of India. J Appl Sci Res 7:1609–1615

    Google Scholar 

  • Lakkireddy K, Kues U (2017) Bulk isolation of basidiospores from wild mushrooms by electrostatic attraction with low risk of microbial contaminations. AMB Express 7:28

    Google Scholar 

  • Lianwen L, Wei L, Weiping S, Mingxin G (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA (2016) Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Saf Environ 102:558–566

    CAS  Google Scholar 

  • Lund LJ, Page AL, Sposito G (1980) Determination and production of chemical forms of trace metals in sewage sludges and sludge – amended soils, Final technical report, United States Environmental protection Agency, Cincinnati, Ohio. J Environ Qual 13:33–38

    Google Scholar 

  • Luo QS, Zhang XH, Wang H (2004) Mobilization of 2, 4-dichlorophenol in soils by non-uniform electrokinetics. Acta Sci Circumst 24:1104–1109

    CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132:21–27

    CAS  Google Scholar 

  • Marzan LW, Hossain M, Mina SA, Akter Y, Chowdhury AMMA (2017) Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: bioremediation viewpoint. Egypt J Aquat Res 43:65–74

    Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    CAS  Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123

    CAS  Google Scholar 

  • Memon AR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    CAS  Google Scholar 

  • Memon AR, Aktoprakligil D, Ozdemir A, Vertii A (2001) Heavy metal accumulation and detoxification mechanisms in plants. Turk J Bot 25:111–121

    Google Scholar 

  • Mielke HW, Berry KJ, Mielke PW, Power ET, Gonzalez CR (2005) Multiple metal accumulation as factor in leaving achievement within various New Orleans elementary school communities. Environ Res 1:67–75

    Google Scholar 

  • Miralles J, Veron AJ, Radakovitch O, Deschamps P, Tremblay T, Hamelin B (2006) Atmospheric lead fallout over the last century recorded in gulf of Lionssediments (Meditterrean Sea). Mar Pollut Bull 52:1364–1371

    CAS  Google Scholar 

  • Moosavi SA, Gharineh MH, Afshari RT, Ebrahimi A (2012) Effects of some heavy metals on seed germination characteristics of canola (Brassica napus), wheat (Triticum aestivum) and safflower (Carthamus tinctorious) to evaluate phytoremediation potential of these crops. J Agric Sci 4:11–19

    Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303

    Google Scholar 

  • Moustakes NK, Ioannidou A, Barouchas PE (2011) The effects of cadmium and zinc interactions on the concentration of cadmium and zinc in pot marigold (Calendula officinalis). Aus J Crop Sci 5:277–282

    Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal mine waste. App Eco Environ 8:207–222

    Google Scholar 

  • Muneer B, Iqbal MJ, Shakoori FR, Shakoori AR (2013) Tolerance and biosorption of mercury by microbial consortia: potential use in bioremediation of wastewater. Pak J Zool 45:247–254

    CAS  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    CAS  Google Scholar 

  • Park D, Yun YS, Jo JH, Park JM (2005) Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res 39:533–540

    CAS  Google Scholar 

  • Park J, Kim JY, Kim KW (2012) Phytoremediation of soil contaminated with heavy metals using Brassica napus. Geosystem Eng 15:10–18

    Google Scholar 

  • Parvathi K, Nagendran R, Nareshkumar R (2007) Effect of pH on chromium biosorption by chemically treated Saccharomyces cerevisiae. J Sci Ind Res 66:675–679

    CAS  Google Scholar 

  • Petruzzelli G (1989) Recycling wastes in agriculture: heavy metal bioavailability. Agric Ecosyst Environ 27:493–503

    CAS  Google Scholar 

  • Prasad MNV (2003) Phyto-remediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:686–700

    CAS  Google Scholar 

  • Priya S, Tiyasha, Bhagat SK (2014) A comparative analysis for phyto-remediation using Allium cepa and Brassica juncea for treatment of sewage water of RIICO industrial area, Jaipur. Int J Adv Sci Tech 1:407–418

  • Puyen ZM, Villagrasa E, Maldonado J, Diestra E, Esteve I, Sole A (2012) Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresour Technol 126:233–237

    CAS  Google Scholar 

  • Qian SQ, Liu Z (2000) An overview of development in the soil-remediation technologies. Chem Ind Eng Process 4(10–12):20

    Google Scholar 

  • Ramos-Miras J, Roca-Perez L, Guzman-Palomino M, Boluda R, Gil C (2011) Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). J Geochem Explor 110:186–192

    CAS  Google Scholar 

  • Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H (2016) Comprehensive review on phyto-technology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599

    CAS  Google Scholar 

  • Roane TM, Pepper LI (2000) Microorganisms and metal pollution. In: Maier RM, Pepper IL, Gerba CB (eds) Environmental microbiology. Academic Press, London

    Google Scholar 

  • Rose EF, Carignan J, Chaussidon M (2000) Transfer of atmospheric boron from oceans to continents: An investigation using precipitation waters and epiphytic lichens. Geochem Geophys Geosyst 1 Paper number-2000GC000077

  • Rose-Kaga EF, Sheppard SMF, Chaussidon M, Carignan J (2006) Boron isotopic composition of atmospheric precipitations and liquid-vapour fractionations. Geochemica et Cosmochimica Acta 70:1603–1615

    Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37:4231–4235

    CAS  Google Scholar 

  • Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S, Balasubramanian T (2017, 2017) Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. Biomed Res Int:6509648, 6 pages. https://doi.org/10.1155/2017/6509648

    Google Scholar 

  • Sharma S, Dhaliwal SS (2019) Effect of sewage sludge and rice straw compost on yield, micronutrient availability and soil quality under rice–wheat system. Commun Soil Sci Plant Anal. https://doi.org/10.1080/00103624.2019.1648489

    CAS  Google Scholar 

  • Shotyk W, Goodsite ME, Barraclough FR, Frei R, Heinemeir J, Asmund G, Lohse C, Hansen TS (2003) Anthropogenic contributions to atmospheric hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C ‘bomp b pulse curve. Geochemica et Cosmochimica Acta 67:3991–4011

    CAS  Google Scholar 

  • Simnova E, Henselova M, Masarovica E, Cohanova J (2007) Comparison tolerance of Brassica juncea and Vigna radicata to cadmium. Biol Plant 51:488–492

    Google Scholar 

  • Singh BR, Narwal RP, Jeny A, Almas A (1995) Crop uptake and extractability of cadmium in soils naturally high in metals at different pH values. Commun Soil Sci Pl Anal 126:2123–2142

    Google Scholar 

  • Singh SP, Tack FM, Verloo MG (1998) Heavy metal fractionation and exractability in dredged sediments derived surface soils. Water Air Soil Pollut 102:313–318

    CAS  Google Scholar 

  • Singh N, Tuhina V, Rajeeva G (2013) Detoxification of hexavalent chromium by an indigenous facultative anaerobic Bacillus cereus strain isolated from tannery effluent. Afr J Biotechnol 12:1091–1103

    CAS  Google Scholar 

  • Srivastava S, Thakur IS (2006) Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Bioresour Technol 97:1167–1173

    CAS  Google Scholar 

  • Srivastava S, Agrawal SB, Mondal MK (2015) A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res 22:15386–15415

    Google Scholar 

  • Sumiahadi A, Acar R (2018) A review of phytoremediation technology: heavy metals uptake by plants. Earth Env Sci 142:12–23

    Google Scholar 

  • Suthar V, Hassan MM, Memon KS, Rafique E (2013) Heavy-metal phytoextraction potential of spinach and mustard grown in contaminated calcareous soils. Commun Soil Sci Pl Anal 44:2757–2770

    CAS  Google Scholar 

  • Swartzbaugh JT, Weisman A, Gabrera-Guzman D (1990) The use of electro-kinetics for hazardous waste site remediation. J Air Waste Manage Assoc 40:1670–1677

    Google Scholar 

  • Szefer PK, Ikuta S, Kushiyama K, Frelek J, Geldo N (1997) Distribution of trace metals in the Pacific oyster, crassostreagigas, and crabs from the East Coast of Kyushu Island, Japan. Bull Environ Contam Toxicol 58:108–114

    CAS  Google Scholar 

  • Taamalli M, Ghabriche R, Amari T, Mnasri M, Zolla L, Lutts S, Abdely C, Ghnaya T (2014) Comparative study of Cd tolerance and accumulation potential between Cakile maritima and Brassica juncea. Int J Phytoremed 71:623–627

    Google Scholar 

  • Tastan BE, Ertugrul S, Donmez G (2010) Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol 10:870–876

    Google Scholar 

  • Tickoo S, Sidhu VK, Singh HB (2007) Screening of Indian mustard genotypes for its cadmium accumulation and tolerance. Physiol Mol Biol Pl13:37–46

    Google Scholar 

  • Tiwari S, Singh SN, Garg SK (2013) Microbially enhanced phytoextraction of heavy-metal fly-ash amended soil. Commun Soil Sci Plan 44:3161–3176

    CAS  Google Scholar 

  • Tokunaga S, Hakuta T (2002) Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere 46:31–38

    CAS  Google Scholar 

  • Turan M, Esringu A (2007) Phytoremediation based on canola (Brassica napus) andIndian mustard (Brassica juncea) planted on spiked soil by aliquot amount of Cd, Cu, Pb and Zn. Pl soil Environ 5(3):844–851

    Google Scholar 

  • Virkutyte J, Sillanpaa M, Latostemaa P (2002) Electrokinetic soil remediation-critical overview. Sci Total Environ 289:97–121

    CAS  Google Scholar 

  • Wan J, Zhang C, Zeng G, Huang D, Hu L, Huang C, Wu H, Wang L (2016) Synthesis and evaluation of a new class of stabilized nano-chlorapatite for Pb immobilization in sediment. J Hazard Mater 320:278–288

    CAS  Google Scholar 

  • Wang JL, Chen C (2009) Biosorbents for heavymetals removal and their future. Biotechnol Adv 27:195–226

    Google Scholar 

  • Wang B, Liu GB, Xue S, Zhu B (2011) Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the loess plateau. Environ Earth Sci 62:915–925

    CAS  Google Scholar 

  • Watanabe T, Murata Y, Osaki M (2009) Amaranthus tricolor has the potential for phytoremediation of cadmium contaminated soils. Commum Soil Sci Pl Anal 126:2123–2142

    Google Scholar 

  • Weiqing M, Zuwei W, Beibei H, Zhongliang W, Hongyuan L, Goodman RC (2016) Heavy metals in soil and plants after long-term sewage irrigation at Tianjin China: a case study assessment. Agric Water Manag 171:153–161

    Google Scholar 

  • Wu J, Hsu FJ, Cunningham SD (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Environ Sci Technol 102:307–318

    CAS  Google Scholar 

  • Xu Q, Huang XF, Cheng JJ (2006) Progress on electro-kinetic remediation and its combined methods for POPs from contaminated soils. Environ Sci 27:2363–2368

    Google Scholar 

  • Yadav S, Srivastava J (2014) Phytoremediation of cadmium toxicity by Brassica spp: a review. Int J Biol Sci 3:47–52

    Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyper accumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    CAS  Google Scholar 

  • Yang Z, Rui-lin M, Wang-dong N, Hui W (2010) Selective leaching of base metals from copper smelter slag. Hydrometallurgy 103:25–29

    Google Scholar 

  • Zeng G, Jia W, Huang D, Liang H, Chao H, Min C, Xue W, Gong X, Wang R, Jiang D (2017) Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils-a review. J Hazard Mater 339:354–367

    CAS  Google Scholar 

  • Zhang YF, Sheng JC, Lu QY (2004) Review on the soil remediation technologies. Gansu Agric Sci Technol 10:36–38

    Google Scholar 

  • Zhou DM, Hao XZ, Xue Y, Cang L, Wang YJ, Chen HM (2004) Advances in remediation technologies of contaminated soils. Ecol Environ Sci 13:234–242

Download references

Funding

The authors received for providing financial assistance in the form of projects from the Department of Science and Technology, New Delhi, and Indian Council of Agricultural Research, New Delhi,

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salwinder Singh Dhaliwal or Jaswinder Singh.

Additional information

Responsible editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaliwal, S.S., Singh, J., Taneja, P.K. et al. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environ Sci Pollut Res 27, 1319–1333 (2020). https://doi.org/10.1007/s11356-019-06967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06967-1

Keywords

Navigation