Skip to main content
Log in

The analysis of green roof’s runoff volumes and its water quality in an experimental study in Porto Alegre, Southern Brazil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The green roofs are structures characterized by the application of vegetation cover in the buildings, using adequate waterproofing and drainage systems. It allows the reduction of surface runoff and delay in peak flow, contributing to the mitigation of flood events in urban areas. Therefore, this study aimed to evaluate the effect of the use of vegetal coverings on the surface runoff, taking into account quantitative and qualitative aspects, using an experimental module installed in the city of Porto Alegre, Brazil. The experimental station consisted of four modules: two horizontal modules with and without vegetation cover and two modules with slopes of 15° with and without vegetation cover. It was evaluated 19 precipitation events, and it was verified the volumes drained in each module after 3, 6 and 12 h from the beginning of precipitation. The water samples were collected in order to analyse the quality of the runoff from the experimental modules. The results have shown that the use of vegetal coverings can provide better distribution of the surface runoff, as well as a decrease of the speed of excess water release with no surface runoff in the first 3 h after the onset of rainfall in the horizontal module. Additionally, it was proved the reduction in drained volumes, with the flat module with vegetation cover being capable of retaining completely precipitations with volumes of approximately 22 mm. The vegetation cover module in roofs was the one that has presented better results regarding the reduction of the flow, presenting an average retention percentage of 91.7% for the first 3 h, indicating that the slope is an important factor. The physical-chemical analysis of the water shows that for all analysed modules, it is possible to use water for non-potable uses, although the water quality of the modules with vegetation cover is lower when compared to the water coming from the module without vegetation cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA. American Public Health Association (2005) Standard methods for the examination of water and wastewater, Washington DC

  • Beecham S, Razzaghmanesh M (2015) Water quality and quantity investigation of green roofs in a dry climate. Water Res 70:370–384

    Article  CAS  Google Scholar 

  • Bengtsson L (2005) Peak flows from thin sedum-moss roof. Nord Hydrol 36:269–280

    Article  Google Scholar 

  • Berndtsson JC (2010) Green roof performance towards management of runoff water quantity and quality: a review. Ecol Eng 36:351–360

    Article  Google Scholar 

  • Berndtsson JC, Emilsson T, Bengtsson L (2006) The influence of extensive vegetated roofs on runoff quality. Sci Total Environ 355:48–63

    Article  CAS  Google Scholar 

  • Berndtsson JC, Bengtsson L, Jinno K (2009) Runoff water quality from intensive and extensive vegetated roofs. Ecol Eng 35:369–380

    Article  Google Scholar 

  • Buffam I, Mitchell ME (2015) Nutrient cycling in green roof ecosystems. In: Sutton R (ed) Green roof ecosystems. Springer, New York, pp 107–137

    Chapter  Google Scholar 

  • Buffam I, Mitchell ME, Durtsche RD (2016) Environmental drivers of seasonal variation in green roof runoff water quality. Ecol Eng 91:506–514. https://doi.org/10.1016/j.ecoleng.2016.02.044

    Article  Google Scholar 

  • CANOAS. Lei n° 5840, de 27 de maio de 2014. Dispõe sobre a criação de telhados verdes e seus critérios técnicos especificados nesta lei e dá outras providências. Canoas-RS. 27 de maio de 2014. Diário Oficial do Município de Canoas

  • Carson TB, Marasco DE, Culligan PJ, McGillis WR (2013) Hydrological performance of extensive green roofs in New York City: observations and multi-year modelling of  three full-scale systems. Environ Res Lett 8(2):24–36

    Article  Google Scholar 

  • Carter TL, Jackson CR (2007) Vegetated roofs for storm water management at multiple spatial scales. Landscape Urban Plann 80:84–94

    Article  Google Scholar 

  • CEIC. Centro Integrado de Comando da Cidade de Porto Alegre (2019) Precipitation volume: historical average rainfall of Porto Alegre (In Portuguese).

  • Chen CF (2013) Performance evaluation and development strategies for green roofs in Taiwan: a review. Ecol Eng 52:51–58. https://doi.org/10.1016/j.ecoleng.2012.12.083

    Article  Google Scholar 

  • Dietz ME, Clausen JC (2005) A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollut 167:123–138

    Article  CAS  Google Scholar 

  • Fassman-Beck E, Voyde E, Simcock R, Hong YS (2013) Living roofs in 3 locations: does configuration affect runoff mitigation? J Hydrol. 490:11–20

    Article  Google Scholar 

  • Getter KL, Rowe DB, Andresen JA (2007) Quantifying the effect of slope on extensive green roof stormwater retention. Ecol Eng 31:225–231

    Article  Google Scholar 

  • GIOÂNIA. Lei complementar n° 235, de 28 de dezembro de 2012. Institui o Programa IPTU Verde no Município de Goiânia. Goiânia-GO. 28 de dezembro de 2012. Diário Oficial do Município de Goiânia

  • GUARULHOS. Lei n° 6793, de 28 de dezembro de 2010. Dispõe sobre o lançamento, arrecadação e fiscalização do imposto sobre a propriedade predial e territorial urbana - IPTU e dá outras providências. Guarulhos-SP. 28 de dezembro de 2010. Diário Oficial do Município de Guarulhos

  • GUARULHOS. Lei n° 7031, de 17 de abril de 2012. Dispõe sobre a instalação do “telhado verde” nos locais que especifica, e dá outras providências. Guarulhos-SP. 17 de abril de 2012. Diário Oficial do Município de Guarulhos

  • Gwak JH, Lee BK, Lee WK, Sohn SY (2017) Optimal location selection for the installation of urban green roofs considering honeybee habitats along with sócio-economic and environmental effects. J Environ Manage 189:125–133

    Article  Google Scholar 

  • Hashemi SS, Mahmud HB, Ashraf MA (2015) Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: a review. Renew Sustain Rev 52:669–679

    Article  Google Scholar 

  • Hutchinson D, Abrams P, Retzlaff R, Liptan T (2003) Storm water monitoring two ecoroofs in Portland, Oregon, USA, In: Proceedings of the greening rooftops for sustainable communities. Chicago, IL, USA

  • JOÃO PESSOA. Lei n° 10047, de 09 de julho de 2013. Dispõe sobre a obrigatoriedade da instalação do “Telhado Verde” nos locais que especifica, e dá outras providências. João Pessoa-PB. 9 de julho de 2013. Diário Oficial da cidade de João Pessoa

  • Johnson C, Schweinhart S, Buffam I (2016) Plant species richness enhances nitrogen retention in green roof plots. Ecol Appl 26(7):2130–2144

    Article  Google Scholar 

  • Lee JY, Lee MJ, Han M (2015) A pilot study to evaluate runoff quantity from green roofs. J Environ Manage 152:171–176

    Article  Google Scholar 

  • Li Y, Babcock R (2014) Green roofs against pollution and climate change. A review. Agronomy for Sustainable Development. Springer Verlag 34:695–705

    Google Scholar 

  • Liu C, Li Y, Li J (2017) Geographic information system-based assessment of mitigating flash-flood disaster from green roof systems. Comput Environ Urban Syst 64:321–331

    Article  Google Scholar 

  • Nagase A, Dunnett N (2012) Amount of water runoff from different vegetation types on extensive green roofs: effects of plants species, diversity and plant structure. Landscape Urban Plann 104:356–363

    Article  Google Scholar 

  • Noya MG, Cuquel FL, Schafer G, Armindoc RA (2017) Substrates for cultivating herbaceous perennial plants in extensive green roofs. Ecol Eng 102:662–669

    Article  Google Scholar 

  • Palla A, Gnecco I, Lanza LG (2010) Hydrologic restoration in the urban environment using green roofs. Water 2:140–154

    Article  Google Scholar 

  • PORTO ALEGRE. Instrução n° 22/2007. Visa garantir nos imóveis, área Livre de qualquer intervenção, permeável, passível de arborização e dá outras providências. Porto Alegre-RS. Outubro de 2007

  • Razzaghmanesh M, Beecham S (2014) The hydrological behaviour of extensive and intensive green roofs in a dry climate. Sci Total Environ 499:284–296

    Article  CAS  Google Scholar 

  • Razzaghmanesh M, Beechama S, Kazemi F (2014) Impact of green roofs on stormwater quality in a South Australian urban environment. Sci Tot Environ 470:651–659

    Article  Google Scholar 

  • RECIFE. Decreto n° 29100, de 06 de novembro de 2017. Regulamenta o art. 5° da Lei n° 8.474, de 02 de outubro de 2013, e institui o Programa de Certificação Sustentável “IPTU VERDE” em edificações no Município de Salvador, que estabelece benefícios fiscais aos participantes do programa, assim como o art. 5° da Lei 8.723 de 22 de dezembro de 2014 e dá outras providências. Recife-PE. 6 de novembro de 2017. Diário Oficial da Cidade de Recife

  • Roehr D, Kong Y (2010) Runoff reduction effects of green roofs in Vancouver, BC, Kelowna, BC, and Shanghai, PR China. Can Water Res J 35:53–68

    Article  Google Scholar 

  • SALVADOR. Decreto n° 29100, de 06 de novembro de 2017. Regulamenta o art. 5° da Lei n° 8.474, de 02 de outubro de 2013, e institui o Programa de Certificação Sustentável “IPTU VERDE” em edificações no Município de Salvador, que estabelece benefícios fiscais aos participantes do programa, assim como o art. 5° da Lei 8.723 de 22 de dezembro de 2014 e dá outras providências. Salvador-BA. 6 de novembro de 2017. Diário Oficial da cidade de Salvador

  • SANTOS. Lei Complementar n° 913, de 21 de dezembro de 2015. Concede incentivo fiscal à implantação de “coberturas verdes” nos edifícios do município, e dá outras providências. Santos-SP. 21 de dezembro de 2015. Diário Oficial do Município de Santos

  • Santos SM, Silva JFF, Santos GC, Macedo PMT, Gavazza S (2019) Integrating conventional and green roofs for mitigating thermal discomfort and water scarcity in urban áreas. J Cleaner Prod 219:639–648

    Article  Google Scholar 

  • SÃO PAULO. Decreto n° 53889, de 8 de maio de 2013. Regulamenta o Termo de Compromisso Ambiental - TCA, instituído pelo artigo 251 e seguintes da Lei n° 13.430, de 13 de setembro de 2002 (Plano Diretor Estratégico). São Paulo-SP. 8 de maio de 2013. Diário Oficial da Cidade de São Paulo

  • Scholtz-Barth K (2001) Green roofs: storm water management from the top down. Environ Des Constr

  • Shafique M, Kim R, Rafiq M (2018) Green roof benefits, opportunities and challenges – a review. Renewable Sustainable Energy Rev. 90:757–773

    Article  Google Scholar 

  • Speak F, Rothwell J, Lindley J, Smith L (2013) Rainwater runoff retention on an aged intensive green roof. Sci Total Environ 461:28–38

    Article  Google Scholar 

  • Speak AF, Rothwell JJ, Lindley SJ, Smith CL (2014) Metal and nutrient dynamics on an aged intensive green roof. Environ Pollut 184:33–43

    Article  CAS  Google Scholar 

  • Teemusk A, Mander U (2007) Rainwater runoff quantity and quality performance from a green roof: the effects of short-term events. Ecol Eng 30:271–277

    Article  Google Scholar 

  • Ugai G (2016) Evaluation of Sustainable Roof from Various Aspects and Benefits of Agriculture Roofing in Urban Core. Proc Soc Behavioral Sci 216:850–860

    Article  Google Scholar 

  • VanWoert ND, Rowe DB, Andresen JA, Rugh CL, Fernandez RT, Xiao L (2005) Green roofs stormwater retention: effects of roof surface, slope, and media depth. J Environ Qual 34:1036–1044

    Article  CAS  Google Scholar 

  • Versini PA, Ramier D, Berthier E, Gouvello B (2015) Assessment of the hydrological impacts of green roof: from building scale to basin scale. J. Hydrol. 524:562–575

    Article  Google Scholar 

  • Vieira NL, Queiroz TM, Fagundes MC, Dallacort R (2013) Potential of utilization of rainwater excess for irrigation of green roofs in Mato Grosso, Brasil. Engenharia Agrícola 33(4):857–864

    Article  Google Scholar 

  • Vijayaraghavan K (2016) Green roofs: a critical review on the role of components, benefits, limitations and trends. Renewable Sustainable Energy Rev 57:740–752

    Article  Google Scholar 

  • Vijayaraghavan K, Joshi UM (2015) Application of seaweed as substrate additive in green roofs: enhancement of water retention and sorption capacity. Landscape Urban Plann 143:25–32

    Article  Google Scholar 

  • Villarreal EL, Bengtsson L (2005) Response of a sedum green-roof to individual rain events. Ecol Eng 25:1–7

    Article  Google Scholar 

  • Viola F, Hellies M, Deidda R (2017) Retention performance of green roofs in representative climates worldwide. J Hydrol 553:763–772

    Article  Google Scholar 

  • Wang X, Tian Y, Zhao X (2017) The influence of dual-substrate-layer extensive green roofs on rainwater runoff quantity and quality. Sci Total Environ 592:465–476

    Article  CAS  Google Scholar 

  • Zhang Q, Miao L, Wang X, Liu D, Zhu L, Zhou B, Liu J (2015) The capacity of greening roof to reduce stormwater runoff and pollution. Landscape Urban Plann 144:142–150

    Article  Google Scholar 

  • Zölch T, Henze L, Keilholz P, Pauleit S (2017) Regulating Urban surface runoff through nature-based solutions - an assessment at the micro-scale. Environ Res 157:135–144

    Article  Google Scholar 

Download references

Funding

The authors were granted research funding from the National Council for Scientific and Technological Development (CNPq). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES), Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Faccio Demarco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, A.S., Goldenfum, J.A., da Silveira, A.L. et al. The analysis of green roof’s runoff volumes and its water quality in an experimental study in Porto Alegre, Southern Brazil. Environ Sci Pollut Res 27, 9520–9534 (2020). https://doi.org/10.1007/s11356-019-06777-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06777-5

Keywords

Navigation