Skip to main content

Advertisement

Log in

Maternal exposure to bisphenol A during pregnancy interferes testis development of F1 male mice

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the effects of maternal exposure to bisphenol A (BPA) on testis development of F1 male mice. The BPA exposure model of pregnant mice was prepared by intragastric administration of BPA at the doses of 0, 2.5, 5, 10, 20, and 40 mg/kg/day at gestation day (GD) 0.5–17.5. The testis index of the offspring mice was calculated at postnatal day (PND) 21 and PND 56. The results showed that maternal exposure to 20 mg/kg BPA during pregnancy significantly increased the testicular index of F1 males at PND 21, and 40 mg/kg BPA significantly decreased the testicular index of F1 males at PND 56 (P < 0.01). BPA significantly reduced serum testosterone (T) and estradiol (E2) levels, and improved testicular ERα and ERβ levels in F1 males at both PND 21 and PND 56. BPA exposure also upregulated transcription of testicular Dnmt1 and inhibited the transcription of testicular Dnmt3A and Dnmt3B in F1 mice at PND 21. BPA reduced the transcriptional level of testicular DNA methyltransferase (Dnmt), increased the expression of testicular caspase-7, caspase-9, and bax, and decreased the expression of bcl-2 in F1 mice at PND 56. Consistent with that, BPA improved the apoptosis rate in the testis at PND 56 (P < 0.01 or P < 0.05). Our study indicates that BPA disrupts the secretion of testosterone, estradiol, and estrogen receptors by interfering with the transcription of testicular DNA methyltransferase (Dnmt) in offspring males, which damages testicular tissues and affects the potential reproductive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbasi J (2018) Scientists call FDA statement on bisphenol a safety premature. JAMA 319:1644–1646

    Article  Google Scholar 

  • Abilmona SM, Sumrell RM, Gill RS, Adler RA, Gorgey AS (2018) Serum testosterone levels may influence body composition and cardiometabolic health in men with spinal cord injury. Spinal Cord 57:229–239.

  • Armstrong CM, Allred KF, Weeks BR, Chapkin RS, Allred CD (2017) Estradiol has differential effects on acute colonic inflammation in the presence and absence of estrogen receptor beta expression. Dig Dis Sci 62:1977–1984

    Article  CAS  Google Scholar 

  • Banerjee A, Anjum S, Verma R, Krishna A (2012) Alteration in expression of estrogen receptor isoforms alpha and beta, and aromatase in the testis and its relation with changes in nitric oxide during aging in mice. Steroids 77:609–620

    Article  CAS  Google Scholar 

  • Beal JA (2018) Baby bottles and bisphenol A (BPA): still a parental concern. MCN Am J Matern Child Nurs 43:349

    Article  Google Scholar 

  • Canovas S, Ross PJ, Kelsey G, Coy P (2017) DNA methylation in embryo development: epigenetic impact of ART (assisted reproductive technologies). Bioessays 39:1700106.

  • Comeglio P, Cellai I, Filippi S, Corno C, Corcetto F, Morelli A, Maneschi E, Maseroli E, Mannucci E, Fambrini M, Maggi M, Vignozzi L (2016) Differential effects of testosterone and estradiol on clitoral function: an experimental study in rats. J Sex Med 13:1858–1871

    Article  Google Scholar 

  • Delbes G, Levacher C, Pairault C, Racine C, Duquenne C, Krust A, Habert R (2004) Estrogen receptor beta-mediated inhibition of male germ cell line development in mice by endogenous estrogens during perinatal life. Endocrinology 145:3395–3403

    Article  CAS  Google Scholar 

  • D'Errico F, Goverse G, Dai Y, Wu W, Stakenborg M, Labeeuw E, De Simone V, Verstockt B, Gomez-Pinilla PJ, Warner M, Di Leo A, Matteoli G, Gustafsson JA (2018) Estrogen receptor beta controls proliferation of enteric glia and differentiation of neurons in the myenteric plexus after damage. Proc Natl Acad Sci U S A 115:5798–5803

    Article  CAS  Google Scholar 

  • Fagin D (2012) Toxicology: the learning curve. Nature 490:462–465

    Article  CAS  Google Scholar 

  • Fenichel P, Chevalier N (2017) Environmental endocrine disruptors: new diabetogens? C R Biol 340:446–452

    Article  Google Scholar 

  • Gupta S, Guha P, Majumder S, Pal P, Sen K, Chowdhury P, Chakraborty A, Panigrahi AK, Mukherjee D (2018) Effects of bisphenol A (BPA) on brain-specific expression of cyp19a1b gene in swim-up fry of Labeo rohita. Comp Biochem Physiol C Toxicol Pharmacol 209:63–71

    Article  CAS  Google Scholar 

  • Huang YQ, Wong CK, Zheng JS, Bouwman H, Barra R, Wahlstrom B, Neretin L, Wong MH (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99

    Article  CAS  Google Scholar 

  • Imao M, Nagaki M, Imose M, Moriwaki H (2006) Differential caspase-9-dependent signaling pathway between tumor necrosis factor receptor- and Fas-mediated hepatocyte apoptosis in mice. Liver Int 26:137–146

    Article  CAS  Google Scholar 

  • Ji Y, Hu B, Li J, Traub RJ (2018) Opposing roles of estradiol and testosterone on stress-induced visceral hypersensitivity in rats. J Pain 19:764–776

    Article  CAS  Google Scholar 

  • Jiang X, Yin L, Zhang N, Han F, Liu WB, Zhang X, Chen HQ, Cao J, Liu JY (2018) Bisphenol A induced male germ cell apoptosis via IFNbeta-XAF1-XIAP pathway in adult mice. Toxicol Appl Pharmacol 355:247–256

    Article  CAS  Google Scholar 

  • Jin H, Zhu L (2016) Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China. Water Res 103:343–351

    Article  CAS  Google Scholar 

  • Jurek A, Leitner E (2018) Analytical determination of bisphenol A (BPA) and bisphenol analogues in paper products by LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34:1225–1238

  • Kundakovic M, Champagne FA (2011) Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun 25:1084–1093

    Article  CAS  Google Scholar 

  • Laing LV, Viana J, Dempster EL, Uren Webster TM, van Aerle R, Mill J, Santos EM (2018) Sex-specific transcription and DNA methylation profiles of reproductive and epigenetic associated genes in the gonads and livers of breeding zebrafish. Comp Biochem Physiol A Mol Integr Physiol 222:16–25

    Article  CAS  Google Scholar 

  • Li Y, Duan F, Zhou X, Pan H, Li R (2018) Differential responses of GC1 spermatogonia cells to high and low doses of bisphenol A. Mol Med Rep 18:3034–3040

    CAS  Google Scholar 

  • Ma S, Shi W, Wang X, Song P, Zhong X (2017) Bisphenol A exposure during pregnancy alters the mortality and levels of reproductive hormones and genes in offspring mice. Biomed Res Int 2017:3585809

    Google Scholar 

  • Meng Y, Lin R, Wu F, Sun Q, Jia L (2018) Decreased capacity for sperm production induced by perinatal bisphenol A exposure is associated with an increased inflammatory response in the offspring of C57BL/6 male mice. Int J Environ Res Public Health 15.pii: E2158.

  • Muhamad MS, Salim MR, Lau WJ, Yusop Z (2016) A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water. Environ Sci Pollut Res Int 23:11549–11567

    Article  CAS  Google Scholar 

  • Negev M, Berman T, Reicher S, Balan S, Soehl A, Goulden S, Ardi R, Shammai Y, Hadar L, Blum A, Diamond ML (2018) Regulation of chemicals in children’s products: how U.S. and EU regulation impacts small markets. Sci Total Environ 616-617:462–471

    Article  CAS  Google Scholar 

  • Owczarek K, Kubica P, Kudlak B, Rutkowska A, Konieczna A, Rachon D, Namiesnik J, Wasik A (2018) Determination of trace levels of eleven bisphenol A analogues in human blood serum by high performance liquid chromatography-tandem mass spectrometry. Sci Total Environ 628–629:1362–1368

    Article  CAS  Google Scholar 

  • Passouant-Fontaine T, Flandre C (1968) Influence of neonatal estrogens on testis development and compensating hypertrophy after hemicastration in rats. C R Seances Soc Biol Fil 162:2175–2178

    CAS  Google Scholar 

  • Petrie B, Lopardo L, Proctor K, Youdan J, Barden R, Kasprzyk-Hordern B (2019) Assessment of bisphenol-A in the urban water cycle. Sci Total Environ 650:900–907

    Article  CAS  Google Scholar 

  • Pirard C, Compere S, Firquet K, Charlier C (2018) The current environmental levels of endocrine disruptors (mercury, cadmium, organochlorine pesticides and PCBs) in a Belgian adult population and their predictors of exposure. Int J Hyg Environ Health 221:211–222

    Article  CAS  Google Scholar 

  • Potter C, McKay J, Groom A, Ford D, Coneyworth L, Mathers JC, Relton CL (2013) Influence of DNMT genotype on global and site specific DNA methylation patterns in neonates and pregnant women. PLoS One 8:e76506

    Article  CAS  Google Scholar 

  • Quan C, Wang C, Duan P, Huang W, Yang K (2017) Prenatal bisphenol a exposure leads to reproductive hazards on male offspring via the Akt/mTOR and mitochondrial apoptosis pathways. Environ Toxicol 32:1007–1023

    Article  CAS  Google Scholar 

  • Rahmani S, Pour Khalili N, Khan F, Hassani S, Ghafour-Boroujerdi E, Abdollahi M (2018) Bisphenol A: what lies beneath its induced diabetes and the epigenetic modulation? Life Sci 214:136–144

    Article  CAS  Google Scholar 

  • Ricci PF (2015) Endocrine disruptors: improving regulatory science policy. Dose-Response 13:1559325815611903

    Article  Google Scholar 

  • Robinson JL, Gupta V, Soria P, Clanaman E, Gurbarg S, Xu M, Chen J, Wadhwa S (2017) Estrogen receptor alpha mediates mandibular condylar cartilage growth in male mice. Orthod Craniofacial Res 20(Suppl 1):167–171

    Article  Google Scholar 

  • Roset R, Ortet L, Gil-Gomez G (2007) Role of Bcl-2 family members on apoptosis: what we have learned from knock-out mice. Front Biosci 12:4722–4730

    Article  CAS  Google Scholar 

  • Sano K, Morimoto C, Nataka M, Musatov S, Tsuda MC, Yamaguchi N, Sakamoto T, Ogawa S (2018) The role of estrogen receptor beta in the dorsal raphe nucleus on the expression of female sexual behavior in C57BL/6J mice. Front Endocrinol (Lausanne) 9:243

    Article  Google Scholar 

  • Takahashi O, Oishi S (2006) Male reproductive toxicity of four bisphenol antioxidants in mice and rats and their estrogenic effect. Arch Toxicol 80:225–241

    Article  CAS  Google Scholar 

  • Toro-Velez AF, Madera-Parra CA, Pena-Varon MR, Lee WY, Bezares-Cruz JC, Walker WS, Cardenas-Henao H, Quesada-Calderon S, Garcia-Hernandez H, Lens PN (2016) BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands. Sci Total Environ 542:93–101

    Article  CAS  Google Scholar 

  • Urriola-Munoz P, Lagos-Cabre R, Moreno RD (2014) A mechanism of male germ cell apoptosis induced by bisphenol-A and nonylphenol involving ADAM17 and p38 MAPK activation. PLoS One 9:e113793

    Article  CAS  Google Scholar 

  • Vasquez YM (2018) Estrogen-regulated transcription: mammary gland and uterus. Steroids 133:82–86

    Article  CAS  Google Scholar 

  • Wang DH, Hu JR, Wang LY, Hu YJ, Tan FQ, Zhou H, Shao JZ, Yang WX (2012) The apoptotic function analysis of p53, Apaf1, Caspase3 and Caspase7 during the spermatogenesis of the Chinese fire-bellied newt Cynops orientalis. PLoS One 7:e39920. 

  • Wei Q, Luo Q, Liu H, Chen L, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) The mitochondrial pathway is involved in sodium fluoride (NaF)-induced renal apoptosis in mice. Toxicol Res (Camb) 7:792–808

    Article  CAS  Google Scholar 

  • Wirbisky-Hershberger SE, Sanchez OF, Horzmann KA, Thanki D, Yuan C, Freeman JL (2017) Atrazine exposure decreases the activity of DNMTs, global DNA methylation levels, and dnmt expression. Food Chem Toxicol 109:727–734

    Article  CAS  Google Scholar 

  • Xia W, Jiang Y, Li Y, Wan Y, Liu J, Ma Y, Mao Z, Chang H, Li G, Xu B, Chen X, Xu S (2014) Early-life exposure to bisphenol a induces liver injury in rats involvement of mitochondria-mediated apoptosis. PLoS One 9:e90443

    Article  CAS  Google Scholar 

  • Xu W, Guo G, Li J, Ding Z, Sheng J, Li J, Tan W (2016) Activation of Bcl-2-Caspase-9 apoptosis pathway in the testis of asthmatic mice. PLoS One 11:e0149353

    Article  CAS  Google Scholar 

  • Xue J, Venkatesan AK, Wu Q, Halden RU, Kannan K (2015) Occurrence of bisphenol A Diglycidyl ethers (BADGEs) and Novolac Glycidyl ethers (NOGEs) in archived biosolids from the U.S. EPA’s targeted National Sewage Sludge Survey. Environ Sci Technol 49:6538–6544

    Article  CAS  Google Scholar 

  • Ye Y, Tang Y, Xiong Y, Feng L, Li X (2019) Bisphenol A exposure alters placentation and causes preeclampsia-like features in pregnant mice involved in reprogramming of DNA methylation of WNT2. FASEB J 33:2732–2742

    Article  CAS  Google Scholar 

  • Yin C, Kang L, Lai C, Zhou J, Shi B, Zhang L, Chen H (2017) Effects of 17beta-estradiol on leptin signaling in anterior pituitary of ovariectomized rats. Exp Anim 66:159–166

    Article  CAS  Google Scholar 

  • Zhang S, Tang B, Fan C, Shi L, Zhang X, Sun L, Li Z (2015) Effect of DNMT inhibitor on bovine parthenogenetic embryo development. Biochem Biophys Res Commun 466:505–511

    Article  CAS  Google Scholar 

  • Zhang W, Schmull S, Du M, Liu J, Lu Z, Zhu H, Xue S, Lian F (2016) Estrogen receptor alpha and beta in mouse: adipose-derived stem cell proliferation, migration, and brown adipogenesis in vitro. Cell Physiol Biochem 38:2285–2299

    Article  CAS  Google Scholar 

  • Zhang Y, Han L, Yang H, Pang J, Li P, Zhang G, Li F, Wang F (2017) Bisphenol A affects cell viability involved in autophagy and apoptosis in goat testis sertoli cell. Environ Toxicol Pharmacol 55:137–147

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (no.31872506).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanyu Shi or Xiuhui Zhong.

Ethics declarations

The protocols using animals in our study were approved by the Council for Animal Care in Hebei province.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Han, C., Geng, Y. et al. Maternal exposure to bisphenol A during pregnancy interferes testis development of F1 male mice. Environ Sci Pollut Res 26, 23491–23504 (2019). https://doi.org/10.1007/s11356-019-05579-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05579-z

Keywords

Navigation