Skip to main content

Advertisement

Log in

Endocrine disrupting pesticides in soil and their health risk through ingestion of vegetables grown in Pakistan

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A comprehensive study was conducted to appraise the concentrations of 30 endocrine disrupting pesticides (EDPs) in soil and vegetable samples collected from Khyber Pakhtunkhwa, Pakistan. The sum of 30 EDPs (Σ30EDPs) ranged from 192 to 2148 μg kg−1 in the collected soils. The selected EDP concentrations exceeded their respective limits in most of the tested soils and showed great variation from site to site. Similarly, high variations in Σ30EDP concentrations were also observed in vegetables with the highest mean concentration in lettuce (28.9 μg kg−1), followed by radish (26.6 μg kg−1), spinach (25.7 μg kg−1), onion (16.2 μg kg−1), turnip (15.6 μg kg−1), and garlic (14.7 μg kg−1). However, EDP levels in all studied vegetables were within FAO/WHO limits. The mean bioconcentration factor values were observed < 1 for all the studied vegetables. The health risk assessment revealed that the incremental lifetime cancer risk (ILCR) of Σ30EDPs associated with vegetable ingestion was below the acceptable risk level (1 × 10−6), showing no cancer risk to local inhabitants. However, exposure to endocrine disruptor and probable carcinogen heptachlor epoxide poses a potential non-cancer risk (hazard quotient (HQ > 1)) to children through vegetable consumption. The presence of banned EDPs in soils and vegetables of the study area indicates the stability of these legacy chemicals in the environment from over usage in the past or illegal current application for agricultural purposes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aamir M, Khan S, Li G (2018) Dietary exposure to HCH and DDT congeners and their associated cancer risk based on Pakistani food consumption. Environ Sci Pollut Res 25:1–10

    Article  CAS  Google Scholar 

  • Alamdar A, Syed JH, Malik RN et al (2014) Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air–soil exchange. Sci Total Environ 470:733–741

    Article  CAS  Google Scholar 

  • Ali N, Kalsoom, Khan S et al (2018) Human health risk assessment through consumption of organophosphate pesticide-contaminated water of Peshawar basin, Pakistan. Expo Health 10:259–272. https://doi.org/10.1007/s12403-017-0259-5

    Article  CAS  Google Scholar 

  • Amoah P, Drechsel P, Abaidoo RC, Ntow WJ (2006) Pesticide and pathogen contamination of vegetables in Ghana’s urban markets. Arch Environ Contam Toxicol 50:1–6. https://doi.org/10.1007/s00244-004-0054-8

    Article  CAS  Google Scholar 

  • Andrade ML, Reyzabal ML, Covelo EF, Vega FA (2005a) Organochlorine pesticides in soils of the horticultural belt of Bahia Blanca (Argentina). Can J Soil Sci 85:273–282

    Article  CAS  Google Scholar 

  • Andrade ML, Reyzábal ML, Covelo EF, Vega FA (2005b) Organochlorine pesticides in soils of the horticultural belt of Bahía Blanca (Argentina). Can J Soil Sci 85:273–282

    Article  CAS  Google Scholar 

  • ATSDR (2007) Toxicological profile for heptachlor and heptachlor epoxide. August 2007. Agence for Toxic Substances and Disease Registry. U.S. Departement of Health and Human Services, Public Health Service. www.atsdr.cdc.gov/toxprofiles/tp.asp?id=746&tid=135. Accessed 11 Apr 2018

  • Baig SA, Akhtera NA, Ashfaq M, Asi MR (2009) Determination of the organophosphorus pesticide in vegetables by high-performance liquid chromatography. Environ Sci 6:513–519

    CAS  Google Scholar 

  • Baird and Cann (2005) Environmental chemistry, 3rd edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Barron MG, Ashurova ZJ, Kukaniev MA, Avloev HK, Khaidarov KK, Jamshedov JN, Rahmatullova OS, Atolikshoeva SS, Mamadshova SS, Manzenyuk O (2017) Residues of organochlorine pesticides in surface soil and raw foods from rural areas of the Republic of Tajikistan. Environ Pollut 224:494–502. https://doi.org/10.1016/j.envpol.2017.02.031

    Article  CAS  Google Scholar 

  • Bempah and Donkor (2011) Pesticide residues in fruits at the market level in Accra Metropolis, Ghana, a preliminary study. Environ Monit Assess 175:551–561. https://doi.org/10.1007/s10661-010-1550-0

    Article  CAS  Google Scholar 

  • Bempah CK, Donkor A, Yeboah PO, Dubey B, Osei-Fosu P (2011) A preliminary assessment of consumer’s exposure to organochlorine pesticides in fruits and vegetables and the potential health risk in Accra Metropolis, Ghana. Food Chem 128:1058–1065. https://doi.org/10.1016/j.foodchem.2011.04.013

    Article  CAS  Google Scholar 

  • Bempah CK, Buah-Kwofie A, Enimil E, Blewu B, Agyei-Martey G (2012) Residues of organochlorine pesticides in vegetables marketed in Greater Accra Region of Ghana. Food Control 25:537–542. https://doi.org/10.1016/j.foodcont.2011.11.035

    Article  CAS  Google Scholar 

  • Bempah CK, Agyekum AA, Akuamoa F et al (2016) Dietary exposure to chlorinated pesticide residues in fruits and vegetables from Ghanaian markets. J Food Compos Anal 46:103–113

    Article  CAS  Google Scholar 

  • Berrada H, Fernández M, Ruiz MJ, Moltó JC, Mañes J, Font G (2010) Surveillance of pesticide residues in fruits from Valencia during twenty months (2004/05). Food Control 21:36–44

    Article  CAS  Google Scholar 

  • Bhanti M, Taneja A (2005) Monitoring of organochlorine pesticide residues in summer and winter vegetables from Agra, India–a case study. Environ Monit Assess 110:341–346

    Article  CAS  Google Scholar 

  • Chakraborty P, Zhang G, Li J et al (2015) Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: Assessment of air–soil exchange. Environ Pollut 204:74–80. https://doi.org/10.1016/J.ENVPOL.2015.04.006

    Article  CAS  Google Scholar 

  • Chen C, Qian Y, Liu X, Tao C, Liang Y, Li Y (2012) Risk assessment of chlorpyrifos on rice and cabbage in China. Regul Toxicol Pharmacol 62:125–130. https://doi.org/10.1016/j.yrtph.2011.12.011

    Article  CAS  Google Scholar 

  • Chourasiya S, Khillare PS, Jyethi DS (2015) Health risk assessment of organochlorine pesticide exposure through dietary intake of vegetables grown in the periurban sites of Delhi, India. Environ Sci Pollut Res 22:5793–5806. https://doi.org/10.1007/s11356-014-3791-x

    Article  CAS  Google Scholar 

  • Covaci A, Hura C, Schepens P (2001) Selected persistent organochlorine pollutants in Romania. Sci Total Environ 280:143–152

    Article  CAS  Google Scholar 

  • Dalvie MA, Myers JE, Lou TM et al (2004) The long-term effects of DDT exposure on semen, fertility, and sexual function of malaria vector-control workers in Limpopo province, South Africa. Environ Res 96:1–8. https://doi.org/10.1016/J.ENVRES.2003.09.002

    Article  CAS  Google Scholar 

  • Darko G, Acquaah SO (2007) Levels of organochlorine pesticides residues in meat. Int J Environ Sci Technol 4:521–524

    Article  CAS  Google Scholar 

  • DCR (1998) Population census Pakistan. Bureau of Statistics. http://www.pbs.gov.pk/content/population-census. Accessed 10 Apr 2018

  • Doong R-A, Peng C-K, Sun Y-C, Liao P-L (2002) Composition and distribution of organochlorine pesticide residues in surface sediments from the Wu-Shi River estuary, Taiwan. Mar Pollut Bull 45:246–253. https://doi.org/10.1016/S0025-326X(02)00102-9

    Article  CAS  Google Scholar 

  • Duan Y, Guan N, Li P, Li J, Luo J (2016) Monitoring and dietary exposure assessment of pesticide residues in cowpea (Vigna unguiculata L. Walp) in Hainan, China. Food Control 59:250–255. https://doi.org/10.1016/J.FOODCONT.2015.05.036

    Article  CAS  Google Scholar 

  • Eqani S-A-M-A-S, Malik RN, Cincinelli A et al (2013) Uptake of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) by river water fish: the case of River Chenab. Sci Total Environ 450:83–91

    Article  CAS  Google Scholar 

  • Fang J, Gao B, Chen J, Zimmerman AR (2015) Hydrochars derived from plant biomass under various conditions: characterization and potential applications and impacts. Chem Eng J 267:253–259. https://doi.org/10.1016/j.cej.2015.01.026

    Article  CAS  Google Scholar 

  • Fang Y, Nie Z, Die Q, Tian Y, Liu F, He J, Huang Q (2017) Organochlorine pesticides in soil, air, and vegetation at and around a contaminated site in southwestern China: concentration, transmission, and risk evaluation. Chemosphere 178:340–349. https://doi.org/10.1016/j.chemosphere.2017.02.151

    Article  CAS  Google Scholar 

  • Farina Y, Abdullah MP, Bibi N, Khalik WMAWM (2017) Determination of pesticide residues in leafy vegetables at parts per billion levels by a chemometric study using GC-ECD in Cameron Highlands. Malaysia Food Chem 224:186–192. https://doi.org/10.1016/j.foodchem.2016.11.113

    Article  CAS  Google Scholar 

  • Fosu-Mensah BY, Okoffo ED, Darko G, Gordon C (2016) Assessment of organochlorine pesticide residues in soils and drinking water sources from cocoa farms in Ghana. Springerplus 5:869. https://doi.org/10.1186/s40064-016-2352-9

    Article  CAS  Google Scholar 

  • Fromberg A, Granby K, Højgård A, Fagt S, Larsen JC (2011) Estimation of dietary intake of PCB and organochlorine pesticides for children and adults. Food Chem 125:1179–1187. https://doi.org/10.1016/J.FOODCHEM.2010.10.025

    Article  CAS  Google Scholar 

  • Gao HJ, Jiang X, Wang F, Wang DZ, Bian YR (2005) Residual levels and bioaccumulation of chlorinated persistent organic pollutants (POPs) in vegetables from suburb of Nanjing, People’s Republic of China. Bull Environ Contam Toxicol 74:673–680. https://doi.org/10.1007/s00128-005-0636-9

    Article  CAS  Google Scholar 

  • Gaw SK, Kim ND, Northcott GL, Wilkins AL, Robinson G (2008) Uptake of ΣDDT, arsenic, cadmium, copper, and lead by lettuce and radish grown in contaminated horticultural soils. J Agric Food Chem 56:6584–6593. https://doi.org/10.1021/jf073327t

    Article  CAS  Google Scholar 

  • Han Y, Mo R, Yuan X, Zhong D, Tang F, Ye C, Liu Y (2017) Pesticide residues in nut-planted soils of China and their relationship between nut/soil. Chemosphere 180:42–47. https://doi.org/10.1016/j.chemosphere.2017.03.138

    Article  CAS  Google Scholar 

  • HSDB (2001) Heptachlor. Hazardous substances data bank, national library of medecine. https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~jpGPT8:1. Accessed 11 Apr 2018

  • Huang T, Guo Q, Tian H, Mao XX, Ding ZY, Zhang G, Li J, Ma JM, Gao H (2014) Assessing spatial distribution, sources, and human health risk of organochlorine pesticide residues in the soils of arid and semiarid areas of Northwest China. Environ Sci Pollut Res 21:6124–6135

    Article  CAS  Google Scholar 

  • IPCS INCHEM (1984) International programme on chemical safety. Environmental Health Criteria - 38 - Heptachlor. World Health Organization

  • Islas-García A, Vega-Loyo LA-LR, Xoconostle-Cázares B, Rodríguez-Vázquez R (2015) Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility. J Environ Sci Heal Part B 50:99–108

    Article  CAS  Google Scholar 

  • Jan FA, Ishaq M, Khan S, Ihsanullah I, Ahmad I, Shakirullah M (2010) A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). J Hazard Mater 179:612–662

    Article  CAS  Google Scholar 

  • Juraske R, Mutel CL, Stoessel F, Hellweg S (2009) Life cycle human toxicity assessment of pesticides: comparing fruit and vegetable diets in Switzerland and the United States. Chemosphere 77:939–945

    Article  CAS  Google Scholar 

  • Khan AB (2005) Studies on the residues of commonly used insecticides on fruits and vegetables grown in NWFP-Pakistan Dissertation, NWFP Agriculture University, Peshawar

  • Khan S, Aijun L, Zhang S, Hu Q, Zhu YG (2008) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. J Hazard Mater 152:506–515. https://doi.org/10.1016/j.jhazmat.2007.07.014

    Article  CAS  Google Scholar 

  • Khan S, Waqas M, Ding F, Shamshad I, Arp HPH, Li G (2015) The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). J Hazard Mater 300:243–253. https://doi.org/10.1016/j.jhazmat.2015.06.050

    Article  CAS  Google Scholar 

  • Kolani L, Mawussi G, Sanda K (2016) Assessment of organochlorine pesticide residues in vegetable samples from some agricultural areas in Togo. Am J Anal Chem 7:332–341. https://doi.org/10.4236/ajac.2016.74031

    Article  CAS  Google Scholar 

  • Kumar B, Kumar S, Mishra M et al (2012) Persistent chlorinated pesticide residues in selected market vegetables of root and leaf origin. Asian J Plant Sci Res 2:232–236

    CAS  Google Scholar 

  • Kumar B, Mishra M, Premanjali VKV (2018) Organochlorines in urban soils from Central India : probabilistic health hazard and risk implications to human population. Environ Geochem Health. https://doi.org/10.1007/s10653-018-0112-1

  • Lemos J, Sampedro MC, de Ariño A, Ortiz A, Barrio RJ (2016) Risk assessment of exposure to pesticides through dietary intake of vegetables typical of the Mediterranean diet in the Basque Country. J Food Compos Anal 49:35–41. https://doi.org/10.1016/j.jfca.2016.03.006

    Article  CAS  Google Scholar 

  • Li Z (2018) Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: An analysis. J Environ Manage 205:163–173. https://doi.org/10.1016/j.jenvman.2017.09.070

    Article  CAS  Google Scholar 

  • Mahugija JAMM, Khamis FA, Lugwisha EHJJ (2017) Determination of levels of organochlorine, organophosphorus, and pyrethroid pesticide residues in vegetables from markets in Dar es Salaam by GC-MS. Int J Anal Chem 2017:1–9. https://doi.org/10.1155/2017/4676724

    Article  CAS  Google Scholar 

  • Mansour SA, Belal MH, Abou-Arab AAK, Gad MF (2009) Monitoring of pesticides and heavy metals in cucumber fruits produced from different farming systems. Chemosphere 75:601–609. https://doi.org/10.1016/j.chemosphere.2009.01.058

    Article  CAS  Google Scholar 

  • Manz M, Wenzel KD, Dietze USG (2001) Persistent organic pollutants in agricultural soils of Germany. Sci Total Environ 277:187–198

    Article  CAS  Google Scholar 

  • Mebdoua S, Lazali M, Ounane SM, Tellah S, Nabi F, Ounane G (2017) Evaluation of pesticide residues in fruits and vegetables from Algeria. Food Addit Contam Part B Surveill 10:91–98. https://doi.org/10.1080/19393210.2016.1278047

    Article  CAS  Google Scholar 

  • Nakata H, Kawazoe M, Arizono K, Abe S, Kitano T, Shimada H, Li W, Ding X (2002) Organochlorine pesticides and polychlorinated biphenyl residues in foodstuffs and human tissues from China: status of contamination, historical trend, and human dietary exposure. Arch Environ Contam Toxicol 43:473–480. https://doi.org/10.1007/s00244-002-1254-8

    Article  CAS  Google Scholar 

  • Nishina T, Kien CN, Van NN et al (2010) Pesticide residues in soils, sediments, and vegetables in the Red River Delta, northern Vietnam. Environ Monit Assess 169:285–297. https://doi.org/10.1007/s10661-009-1170-8

    Article  CAS  Google Scholar 

  • Niu L, Xu C, Zhu S, Liu W (2016) Residue patterns of currently, historically and never-used organochlorine pesticides in agricultural soils across China and associated health risks. Environ Pollut 219:315–322. https://doi.org/10.1016/j.envpol.2016.10.060

    Article  CAS  Google Scholar 

  • Nyambo B, Mtashobya L (2014) Levels of pesticide residues in the Eastern Arc Mountains part of Tanzania. Int J Agri Sci 4:452–462

    Google Scholar 

  • Odukkathil G, Vasudevan N (2016) Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation. J Environ Manage 165:72–80. https://doi.org/10.1016/j.jenvman.2015.09.020

    Article  CAS  Google Scholar 

  • Osman KA, Al-Humaid AM, Al-Rehiayani SM, Al-Redhaiman KN (2010) Monitoring of pesticide residues in vegetables marketed in Al-Qassim region, Saudi Arabia. Ecotoxicol Environ Saf 73:1433–1439. https://doi.org/10.1016/j.ecoenv.2010.05.020

    Article  CAS  Google Scholar 

  • Owago OJ, Qi S, Xinli X et al (2006) Residues of organochlorine pesticides in vegetables from Deyang and Yanting areas of the Chengdu economic region. Sichuan J Am Sci 5:91–100

    Google Scholar 

  • Park DW, Kim KG, Choi EA et al (2016) Pesticide residues in leafy vegetables, stalk and stem vegetables from South Korea: a long-term study on safety and health risk assessment. Food Addit Contam Part A 33:105–118

    CAS  Google Scholar 

  • Pathak S, Solanki H, Renuka A, Kundu R (2016) Levels of organochlorinated pesticide residues in vegetables. Int J Veg Sci 22:423–431. https://doi.org/10.1080/19315260.2015.1066915

    Article  Google Scholar 

  • Pereira RC, Martinez MCM, Cortizas AM, Macias F (2010) Analysis of composition, distribution and origin of hexachlorocyclohexane residues in agricultural soils from NW Spain. Sci Total Environ 408:5583–5591

    Article  CAS  Google Scholar 

  • Qin G, Li Y, Chen Y, Sun Q, Zuo B, He F, Shen N, Jia G, Ding G (2015) Pesticide residues determination in China vegetables in 2010–2013 applying gas chromatography with mass spectrometry. Food Res Int 72:161–167. https://doi.org/10.1016/j.foodres.2015.03.036

    Article  CAS  Google Scholar 

  • Qu C, Albanese S, Lima A et al (2017) Residues of hexachlorobenzene and chlorinated cyclodiene pesticides in the soils of the Campanian Plain, southern Italy. Environ Pollut 231:1497–1506. https://doi.org/10.1016/j.envpol.2017.08.100

    Article  CAS  Google Scholar 

  • Rehman ZU, Khan S, Brusseau ML, Shah MT (2017) Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan. Chemosphere 168:1589–1596. https://doi.org/10.1016/j.chemosphere.2016.11.152

    Article  CAS  Google Scholar 

  • Rodgers KM, Udesky JO, Rudel RA, Brody JG (2018) Environmental chemicals and breast cancer: an updated review of epidemiological literature informed by biological mechanisms. Environ Res 160:152–182. https://doi.org/10.1016/J.ENVRES.2017.08.045

    Article  CAS  Google Scholar 

  • Saeed T, Sawaya WN, Ahmad N, Rajagopal S, al-Omair A, al-Awadhi F (2001) Chlorinated pesticide residues in the total diet of Kuwait. Food Control 12:91–98

    Article  CAS  Google Scholar 

  • Sharma CM, Rosseland BO, Almvik M, Eklo OM (2009) Bioaccumulation of organochlorine pollutants in the fish community in Lake Årungen, Norway. Environ Pollut 157:2452–2458

    Article  CAS  Google Scholar 

  • Sharma HR, Kaushik A, Kaushik CP (2013) Organochlorine pesticide residues in fodder from rural areas of Haryana, India. Toxicol Environ Chem 95:69–81. https://doi.org/10.1080/02772248.2012.748779

    Article  CAS  Google Scholar 

  • Shen L, Xia B, Dai X (2013) Residues of persistent organic pollutants in frequently-consumed vegetables and assessment of human health risk based on consumption of vegetables in Huizhou, South China. Chemosphere 93:2254–2263. https://doi.org/10.1016/J.CHEMOSPHERE.2013.07.079

    Article  CAS  Google Scholar 

  • Shi W, Zhang F, Zhang X, Su G, Wei S, Liu H, Cheng S, Yu H (2011) Identification of trace organic pollutants in freshwater sources in Eastern China and estimation of their associated human health risks. Ecotoxicology 20:1099–1106. https://doi.org/10.1007/s10646-011-0671-8

    Article  CAS  Google Scholar 

  • Singh KP, Malik A, Sinha S (2007) Persistent organochlorine pesticide residues in soil and surface water of northern Indo-Gangetic alluvial plains. Environ Monit Assess 125:147–155

    Article  CAS  Google Scholar 

  • Sruthi SN, Shyleshchandran MS, Mathew SP, Ramasamy EV (2017) Contamination from organochlorine pesticides (OCPs) in agricultural soils of Kuttanad agroecosystem in India and related potential health risk. Environ Sci Pollut Res 24:969–978. https://doi.org/10.1007/s11356-016-7834-3

    Article  CAS  Google Scholar 

  • Sultana J, Syed JH, Mahmood A et al (2014) Investigation of organochlorine pesticides from the Indus Basin, Pakistan: sources, air–soil exchange fluxes and risk assessment. Sci Total Environ 497:113–122

    Article  CAS  Google Scholar 

  • Sun K, Jin J, Keiluweit M, Kleber M, Wang Z, Pan Z, Xing B (2012) Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresour Technol 118:120–127. https://doi.org/10.1016/j.biortech.2012.05.008

    Article  CAS  Google Scholar 

  • Sun J, Pan L, Tsang DCW et al (2018) Phthalate esters and organochlorine pesticides in agricultural soils and vegetables from fast-growing regions : a case study from eastern China. Environ Sci Pollut Res Int 25:34–42. https://doi.org/10.1007/s11356-016-7725-7

    Article  CAS  Google Scholar 

  • Swarnam TP, Velmurugan A (2013) Pesticide residues in vegetable samples from the Andaman Islands, India. Environ Monit Assess 185:6119–6127

    Article  CAS  Google Scholar 

  • Syed JH, Alamdar A, Mohammad A, Ahad K, Shabir Z, Ahmed H, Ali SM, Sani SGAS, Bokhari H, Gallagher KD, Ahmad I, Eqani SAMAS (2014) Pesticide residues in fruits and vegetables from Pakistan: a review of the occurrence and associated human health risks. Environ Sci Pollut Res 21:13367–13393. https://doi.org/10.1007/s11356-014-3117-z

    Article  CAS  Google Scholar 

  • Tahir MU, Naik I, Rehman S, Shahzad M (2009) A quantitative analysis for the toxic pesticide residues in marketed fruits and vegetables in Lahore, Pakistan. Biomedica 25:23–171

    Google Scholar 

  • UNEP (2016) Listing of POPs in the Stockholm Convention. http://chm.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx. Accessed 10 Apr 2018

  • UNEP C (2001) Stockholm Convention on Persistent Organic Pollutants (POPs). UNEP Chem Geneva

  • UNEP U (2009) Report of the conference of the parties of the Stockholm Convention on Persistent Organic Pollutants on the work of its fourth meeting. In: United Nations Environment Programme: Stockholm Convention on Persistent Organic Pollutants. Geneva. p 112

  • US-EPA (1996) Integrated risk information system. United States Environmental Protection Agency. Office of Health and Environmental Assessment, Washington, D.C.

    Google Scholar 

  • US-EPA (2010) Integrated Risk Information System

  • US-EPA (2011) Exposure factor handbook, EPA/600/R-090/052 F. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US-EPA (2012) Integrated risk information system. Hum heal risk assessment; risk based screen table

  • US-EPA (2013) (Integrated Risk Information System) compares IRIS values. https://cfpub.epa.gov/ncea/iris/compare.cfm. Accessed 13 Apr 2018

  • Vithanage M, Dabrowska BB, Mukherjee AB, Sandhi A, Bhattacharya P (2012) Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ Chem Lett 10:217–224. https://doi.org/10.1007/s10311-011-0349-8

    Article  CAS  Google Scholar 

  • Wang Y, Wang Y, Huo X, Zhu Y (2015) Why some restricted pesticides are still chosen by some farmers in China? Empirical evidence from a survey of vegetable and apple growers. Food Control 51:417–424. https://doi.org/10.1016/j.foodcont.2014.12.002

    Article  Google Scholar 

  • Wang B, Wu C, Liu W, Teng Y, Luo Y, Christie P, Guo D (2016) Levels and patterns of organochlorine pesticides in agricultural soils in an area of extensive historical cotton cultivation in Henan province, China. Environ Sci Pollut Res 23:6680–6689. https://doi.org/10.1007/s11356-015-5864-x

    Article  CAS  Google Scholar 

  • Waqas M, Khan S, Chao C, Shamshad I, Qamar Z, Khan K (2014) Quantification of PAHs and health risk via ingestion of vegetable in Khyber Pakhtunkhwa Province. Pakistan Sci Total Environ 497:448–458. https://doi.org/10.1016/j.scitotenv.2014.07.128

    Article  CAS  Google Scholar 

  • Weaver TB, Ghadiri H, Hulugalle NR, Harden S (2012) Organochlorine pesticides in soil under irrigated cotton farming systems in Vertisols of the Namoi Valley, north-western New South Wales, Australia. Chemosphere 88:336–343. https://doi.org/10.1016/J.Chemosphere.2012.03.008

    Article  CAS  Google Scholar 

  • Wu L, Zhou X, Zhao D, Feng T, Zhou J, Sun T, Wang J, Wang C (2017) Seasonal variation and exposure risk assessment of pesticide residues in vegetables from Xinjiang Uygur Autonomous Region of China during 2010–2014. J Food Compos Anal 58:1–9. https://doi.org/10.1016/j.jfca.2016.12.025

    Article  CAS  Google Scholar 

  • Yadav IC, Devi NL, Li J, Zhang G, Shakya PR (2016) Occurrence, profile and spatial distribution of organochlorines pesticides in soil of Nepal: implication for source apportionment and health risk assessment. Sci Total Environ 573:1598–1606. https://doi.org/10.1016/j.scitotenv.2016.09.133

    Article  CAS  Google Scholar 

  • Zhang G, Chakraborty P, Li J, Sampathkumar P, Balasubramanian T, Kathiresan K, Takahashi S, Subramanian A, Tanabe S, Jones KC (2008) Passive atmospheric sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers in urban, rural, and wetland sites along the coastal length of India. Environ Sci Technol 42:8218–8223

    Article  CAS  Google Scholar 

  • Zhang A, Luo W, Sun J, Xiao H, Liu W (2015) Distribution and uptake pathways of organochlorine pesticides in greenhouse and conventional vegetables. Sci Total Environ 505:1142–1147. https://doi.org/10.1016/j.scitotenv.2014.11.023

    Article  CAS  Google Scholar 

  • Zhou P, Zhao Y, Li J, Wu G, Zhang L, Liu Q, Fan S, Yang X, Li X, Wu Y (2012) Dietary exposure to persistent organochlorine pesticides in 2007 Chinese total diet study. Environ Int 42:152–159. https://doi.org/10.1016/J.ENVINT.2011.05.018

    Article  CAS  Google Scholar 

Download references

Funding

The current study was financially supported under the Strategic Priority Research Program (XDB15020301) by Chinese Academy of Sciences and the National Natural Science Foundation of China (41525002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sardar Khan.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research Highlights

• The mean values of Σ30EDPs ranged from 192 to 2148 μg kg-1 in the soils of Pakistan.

• The selected EDP concentrations exceeded the MRLs in most of the tested soils.

• Highest EDP concentration was observed in lettuce (28.9 μg/kg) followed by radish (26.6 μg/kg).

• EDP levels in all studied vegetables were below EDP MRLs set by FAO/WHO.

• ILCR via vegetable intake was < 10-6 for adults and children indicating no cancer risk

Electronic supplementary material

ESM 1

(DOC 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Khan, S., Khan, M.A. et al. Endocrine disrupting pesticides in soil and their health risk through ingestion of vegetables grown in Pakistan. Environ Sci Pollut Res 26, 8808–8820 (2019). https://doi.org/10.1007/s11356-019-04287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04287-y

Keywords

Navigation