Skip to main content
Log in

Allelopathic effects of Chara species (C. aspera, C. baltica, and C. canescens) on the bloom-forming picocyanobacterium Synechococcus sp.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The role of macroalgal allelopathy in aquatic systems has received increasing attention as a potential means of controlling cyanobacterial blooms. However, the allelopathic activity of Chara sp. on coexisting and bloom-forming picocyanobacteria is still largely unknown. Therefore, the laboratory experiments were conducted to investigate the allelopathic activity of extracts of Chara aspera, C. baltica, and C. canescens on the growth, the fluorescence parameters: maximum and effective quantum yield of photosystem II (PSII) photochemistry (Fv/Fm and ΦPSII, respectively) and photosynthesis parameters such as the initial slope of photosynthesis-irradiance (P-E) curves (alpha) and photosynthetic capacity (Pm) of the picocyanobacterium Synechococcus sp. Batch cultures of picocyanobacterium were exposed to three concentrations of extracts originating from three charophyte cultures and the effect was followed at three sampling times. Dried specimens of C. aspera, C. baltica, and C. canescens were extracted in the water-based matrix and the initial Synechococcus sp. inoculum, derived from unialgal culture media, was used. We found both negative and positive allelopathic effects of all tested Chara extracts on Synechococcus sp. The strongest adverse impact of picocyanobacterium growth was caused by C. baltica. This study clearly demonstrated that the allelopathic effect depends on the Chara species identity. Our results also suggested that some allelopathic Chara sp. have the potential to mitigate harmful cyanobacterial blooms in systems dominated by Synechococcus sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anthoni U, Christophersen C, Øg J, Wium-Andersen S, Jacobsen N (1980) Biologically active sulphur compounds from the green alga Chara globularis. Phytochemistry 19(6):1228–1229

    Article  CAS  Google Scholar 

  • Anthoni U, Nielsen PH, Smith-Hansen L, Wium-Andersen S, Christophersen C (1987) Charamin, a quaternary ammonium ion antibiotic from the green alga Chara globularis. J Org Chem 52(4):694–695

    Article  CAS  Google Scholar 

  • Barreiro Felpeto A, Śliwińska-Wilczewska S, Złoch I, Vasconcelos V (2018) Light-dependent cytolysis in the allelopathic interaction between picoplanktic and filamentous cyanobacteria. J Plankton Res 40(2):165–177

    Article  Google Scholar 

  • Bauer N, Blaschke U, Beutler E, Gross EM, Jenett-Siems K, Siems K, Hilt S (2009) Seasonal and interannual dynamics of polyphenols in Myriophyllum verticillatum and their allelopathic activity on Anabaena variabilis. Aquat Bot 91(2):110–116

    Article  CAS  Google Scholar 

  • Beardall J (2008) Blooms of Synechococcus: An analysis of the problem worldwide and possible causative factors in relation to nuisance blooms in the Gippsland Lakes. Monash university 1–8

  • Beilby MJ (2015) Salt tolerance at single cell level in giant-celled Characeae. Front Plant Sci 6:226

    Article  Google Scholar 

  • Berger J, Schagerl M (2003) Allelopathic activity of Chara aspera. Hydrobiol 501(1–3):109–115

    Article  CAS  Google Scholar 

  • Berger J, Schagerl M (2004) Allelopathic activity of Characeae. Biologia, Bratislava 59(1):9–15

    Google Scholar 

  • Callieri C (2010) Single cells and microcolonies of freshwater picocyanobacteria: a common ecology. J Limnol 69(2):257–277

    Article  Google Scholar 

  • Campbell D, Hurry V, Clarke AK, Gustafsson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683

    CAS  Google Scholar 

  • Cirujano S, Camargo JA, Gómez-Cordovés C (2004) Feeding preference of the red swamp crayfish Procambarus clarkii (Girard) on living macrophytes in a Spanish wetland. J Freshw Ecol 19(2):219–226

    Article  Google Scholar 

  • Dauby P, Poulicek M (1995) Methods for removing epiphytes from seagrasses: SEM observations on treated leaves. Aquat Bot 52:217–228

    Article  Google Scholar 

  • Drobnik J (2007) Herbarium and knowledge about herbaria. PWN, Warszawa. 293 pp.

  • Erhard D, Gross EM (2006) Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquat Bot 85(3):203–211

    Article  Google Scholar 

  • Ghobrial MG, Nassr HS, Kamil AW (2015) Bioactivity effect of two macrophyte extracts on growth performance of two bloom-forming cyanophytes. Egypt J Aquat Res 41(1):69–81

    Article  Google Scholar 

  • Granéli E, Hansen PJ (2006) Allelopathy in harmful algae: a mechanism to compete for resources? In: Granéli E, Turner JT (eds) Ecology of harmful algae, ecological studies 189. Springer-Verlag, Berlin Heidelberg, Germany, p 189201

  • Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339

    Article  Google Scholar 

  • Gross EM, Erhard D, Iványi E (2003) Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiol 506(1):583–589

    Article  Google Scholar 

  • Gross EM, S, Lombardo P, Mulderij G (2007) Searching for allelopathic effects of submerged macrophytes on phytoplankton - state of the art and open questions. Hydrobiol 584(1):77–88

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York

    Google Scholar 

  • Guillard RR, Sieracki MS (2005) Counting cells in cultures with the light microscope. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, pp 239–252

    Google Scholar 

  • He F, Deng P, Wu XH, Cheng SP, Gao YN, Wu ZB (2008) Allelopathic effectson Scenedesmus obliquus by two submerged macrophytes Najas minor and Potamogeton malaianus. Fresenius Environ Bull 17:92–97

    CAS  Google Scholar 

  • Hilt S (2006) Allelopathic inhibition of epiphytes by submerged macrophytes. Aquat Bot 85(3):252–256

    Article  Google Scholar 

  • Hilt S, Gross EM (2008) Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic Appl Ecol 9(4):422–432

    Article  Google Scholar 

  • Hilt S, Ghobrial MG, Gross EM (2006) In situ allelopathic potential of Myriophyllum verticillatum (Haloragaceae) against selected phytoplankton species. J Phycol 42(6):1189–1198

    Article  Google Scholar 

  • Howarth R, Anderson D, Cloern J, Elfring C, Hopkinson C, Lapointe B, Malone T, Marcus N, McGlathery K, Sharpley A, Walker D (2000) Nutrient pollution of coastal rivers, bays, and seas. Issues in Ecology 7:1–5

    Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Jasser I, Callieri C (2017) Picocyanobacteria: the smallest cell-size cyanobacteria. In: Meriluoto, J., Spoof, L. and Codd G. A. (eds), Handbook on cyanobacterial monitoring and cyanotoxin analysis. John Wiley & Sons, Ltd., pp. 19–27

  • Joye DA, Rey-Boissezon A (2015) Will charophyte species increase or decrease their distribution in a changing climate? Aquat Bot 120:73–83

    Article  Google Scholar 

  • Kalmbach K (2011) Herbarium plant collection protocol. How to prepare herbarium specimens? Denver Botanic Gardens, Denver, USA, 12 pp.

  • Körner S, Nicklisch A (2002) Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J Phycol 38(5):862–871

    Article  Google Scholar 

  • Krause W (1997) Süßwasserflora von Mitteleuropa. Bd. 18. Charales (Charophyceae). Jena, Stuttgart, Lubeck, Ulm, 202 pp.

  • Kufel L, Kufel I (2002) Chara beds acting as nutrient sinks in shallow lakes - a review. Aquat Bot 72(3–4):249–260

    Article  Google Scholar 

  • Lake MD, Hicks BJ, Wells RDS, Dugdale TM (2002) Consumption of submerged aquatic macrophytes by rudd (Scardinius erythrophthalmus L.) in New Zealand. Hydrobiol 470(1–3):13–22

    Article  Google Scholar 

  • Langangen A (2000) Charophytes from the warm springs of Svalbard. Polar Res 19(2):143–153

    Article  Google Scholar 

  • Lapointe BE, Littler MM, Littler DS (1992) Nutrient availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters. Estuaries 15:75–82

    Article  CAS  Google Scholar 

  • Leu E, Krieger-Liszkay A, Goussias C, Gross EM (2002) Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol 130(4):2011–2018

    Article  CAS  Google Scholar 

  • Lu H, Xie H, Gong Y, Wang Q, Yang Y (2011) Secondary metabolites from the seaweed Gracilaria lemaneiformis and their allelopathic effects on Skeletonema costatum. Biochem Syst Ecol 39(4):397–400

    Article  CAS  Google Scholar 

  • Mabrouk L, Hamza A, Brahim MB Bradai MN (2011) Temporal and depth distribution of microepiphytes on Posidonia oceanica (L.) Delile leaves in a meadow off Tunisia. Mar Ecol 32:148–161

    Article  Google Scholar 

  • Maehnert B, Schagerl M, Krenn L (2017) Allelopathic potential of stoneworts. Fottea, Olomouc 17(2):137–149

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  • Mazur-Marzec H, Sutryk K, Kobos J, Hebel A, Hohlfeld N, Błaszczyk A, Toruńska A, Kaczkowska MJ, Łysiak-Pastuszak E, Kraśniewski W, Jasser I (2013) Occurrence of cyanobacteria and cyanotoxin in the Southern Baltic Proper. Filamentous cyanobacteria versus single-celled picocyanobacteria. Hydrobiol 701:235–252

    Article  CAS  Google Scholar 

  • Mulderij G, Van Donk E, Roelofs JGM (2003) Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiol 491(1):261–271

    Article  Google Scholar 

  • Pakdel FM, Sim L, Beardall J, Davis J (2013) Allelopathic inhibition of microalgae by the freshwater stonewort, Chara australis, and a submerged angiosperm, Potamogeton crispus. Aquat Bot 110:24–30

    Article  Google Scholar 

  • Prince EK, Myers TL, Kubanek J (2008) Effects of harmful algal blooms on competitors: allelopathic mechanisms of the red tide dinoflagellate Karenia brevis. Limnol Oceanogr 53:531–541

    Article  Google Scholar 

  • Rojo C, Mosquera Z, Álvarez-Cobelas M, Segura M (2017) Microalgal and cyanobacterial assemblages on charophytes: a metacommunity perspective. Fundam Appl Limnol 190(2):97–115

  • Rybak AS (2016) Freshwater population of Ulva flexuosa (Ulvaceae, Chlorophyta) as a food source for great pond snail: Lymnaea stagnalis (Mollusca, Lymnaeidae). Phycol Res 64(4):207–211

    Article  Google Scholar 

  • Rybak AS (2018a) Species of Ulva (Ulvophyceae, Chlorophyta) as indicators of salinity. Ecol Indic 85:253–261

    Article  Google Scholar 

  • Rybak AS (2018b) The Ulva flexuosa complex (Ulvaceae, Chlorophyta): an updated identification key with special reference to the freshwater and hyperhaline taxa. Phytotaxa 345(2):83–103

    Article  Google Scholar 

  • Rybak AS, Gąbka M (2018) The influence of abiotic factors on the bloom-forming alga Ulva flexuosa (Ulvaceae, Chlorophyta): possibilities for the control of the green tides in freshwater ecosystems. J Appl Phycol 30(2):1405–1416

    Article  CAS  Google Scholar 

  • Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre LL, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J Plankton Res 19(11):1637–1670

    Article  CAS  Google Scholar 

  • Schubert H, Marquardt R, Schories D, Blindow I (2015) Biogeography of Chilean charophytes. Aquat Bot 120:129–141

    Article  Google Scholar 

  • Śliwińska-Wilczewska S, Maculewicz J, Barreiro Felpeto A, Vasconcelos V, Latała A (2017) Allelopathic activity of the picocyanobacterium Synechococcus sp. on filamentous cyanobacteria. J Exp Mar Biol Ecol 496:16–21

    Article  Google Scholar 

  • Śliwińska-Wilczewska S, Maculewicz J, Barreiro Felpeto A, Latała A (2018) Allelopathic and bloom-forming picocyanobacteria in a changing world. Toxins 10:48. https://doi.org/10.3390/toxins10010048

    Article  CAS  Google Scholar 

  • Sorokin YI, Dallocchio F (2008) Dynamics of phosphorus in the Venice lagoon during a picocyanobacteria bloom. J Plankton Res 30(9):1019–1026

    Article  CAS  Google Scholar 

  • Sorokin YI, Zakuskina OY (2010) Features of the Comacchio ecosystem transformed during persistent bloom of picocyanobacteria. J Oceanogr 66:373–387

    Article  Google Scholar 

  • Sorokin PY, Sorokin YI, Boscolo R, Giovanardi O (2004) Bloom of picocyanobacteria in the Venice lagoon during summer-autumn 2001: ecological sequences. Hydrobiol 523(1–3):71–85

    Article  Google Scholar 

  • Suikkanen S, Engström-Öst J, Jokela J, Sivonen K, Viitasalo M (2006) Allelopathy of Baltic Sea cyanobacteria: no evidence for the role of nodularin. J Plankton Res 28(6):543–550

    Article  CAS  Google Scholar 

  • Tang YZ, Gobler CJ (2011) The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10(5):480–488

    Article  Google Scholar 

  • van Donk E, van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto-and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72(3):261–274

    Article  Google Scholar 

  • Wang R, Xiao H, Zhang P, Qu L, Cai H, Tang X (2007) Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense. J Appl Phycol 19(2):109–121

    Article  Google Scholar 

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29(2):949–982

    Article  CAS  Google Scholar 

  • Wium-Andersen S, Anthoni U, Christophersen C, Houen G (1982) Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39(2):187–190

    Article  Google Scholar 

  • Wium-Andersen S, Anthoni U, Houen G (1983) Elemental sulphur, a possible allelopathic compound from Ceratophyllum demersum. Phytochemistry 22(11):2613

    Article  CAS  Google Scholar 

  • Worden AZ, Wilken S (2016) A plankton bloom shifts as the ocean warms. Science 354(6310):287–288

    Article  CAS  Google Scholar 

  • Xu D, Gao Z, Zhang X, Fan X, Wang Y, Li D, Ye N (2012) Allelopathic interactions between the opportunistic species Ulva prolifera and the native macroalga Gracilaria lichvoides. PLoS One 7(4):e33648

    Article  CAS  Google Scholar 

  • Zaneveld JS (1940) The Charophyta of Malaysia and adjacent countries. Blumea-Biodivers Evol Biogeogr Plants 4(1):1–223

  • Zhu J, Liu B, Wang J, Gao Y, Wu Z (2010) Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat Toxicol 98(2):196–203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous Reviewers and Editor for their valuable comments and suggestions to improve the quality of the paper. This study was supported by BMN grants, Poland, no. 538-G245-B116-18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Śliwińska-Wilczewska.

Additional information

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Złoch, I., Śliwińska-Wilczewska, S., Kucharska, M. et al. Allelopathic effects of Chara species (C. aspera, C. baltica, and C. canescens) on the bloom-forming picocyanobacterium Synechococcus sp.. Environ Sci Pollut Res 25, 36403–36411 (2018). https://doi.org/10.1007/s11356-018-3579-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3579-5

Keywords

Navigation