Skip to main content
Log in

Preparation and adsorption characteristics for heavy metals of active silicon adsorbent from leaching residue of lead-zinc tailings

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To comprehensively reuse the leaching residue obtained from lead-zinc tailings, an active silicon adsorbent (ASA) was prepared from leaching residue and studied as an adsorbent for copper(II), lead(II), zinc(II), and cadmium(II) in this paper. The ASA was prepared by roasting the leaching residue with either a Na2CO3/residue ratio of 0.6:1 at 700 °C for 1 h or a CaCO3/residue ratio of 0.8:1 at 800 °C for 1 h. Under these conditions, the available SiO2 content of the ASA was more than 20%. The adsorption behaviors of the metal ions onto the ASA were investigated and the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were used to analyze the adsorption isotherm. The result showed that the maximum adsorption capacities of copper(II), lead(II), cadmium(II), and zinc(II) calculated by the Langmuir model were 3.40, 2.83, 0.66, and 0.62 mmol g−1, respectively. The FT-IR spectra of the ASA and the mean free adsorption energies indicated that ion exchange was the mechanism of copper(II), lead(II), and cadmium(II) adsorption and that chemical reaction was the mechanism of zinc(II) adsorption. These results provide a method for reusing the leaching residue obtained from lead-zinc tailings and show that the ASA is an effective adsorbent for heavy metal pollution remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alter A, Wiech G (1978) X-ray spectroscopic studies on the electronic structure of binary glasses. Jpn J Appl Phys Suppl 17:288–290

    Article  Google Scholar 

  • Anbia M, Kargosha K, Khoshbooei S (2015) Heavy metal ions removal from aqueous media by modified magnetic mesoporous silica MCM-48. Chem Eng Res Des 93:779–788

    Article  CAS  Google Scholar 

  • Andrejkovičová S, Sudagar A, Rocha J, Patinha C, Hajjaji W, Da Silva EF, Velosa A, Rocha F (2016) The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers. Appl Clay Sci 126:141–152

    Article  CAS  Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219–243

    Article  CAS  Google Scholar 

  • Bhattacharyya KG, Sen Gupta S (2006) Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: influence of acid activation of the clays. Colloids Surf A Physicochem Eng Asp 277:191–200

    Article  CAS  Google Scholar 

  • Duan Q, Lee J, Liu Y, Chen H, Hu H (2016) Distribution of heavy metal pollution in surface soil samples in China: a graphical review. Bull Environ Contam Toxicol 97:303–309

    Article  CAS  Google Scholar 

  • Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. J Colloid Interface Sci 280:309–314

    Article  CAS  Google Scholar 

  • Fan X, Wen X, Huang F, Cai Y, Cai K (2016) Effects of silicon on morphology, ultrastructure and exudates of rice root under heavy metal stress. Acta Physiol Plant 38:197

    Article  CAS  Google Scholar 

  • Figueira P, Lopes CB, Daniel-da-Silva AL, Pereira E, Duarte AC, Trindade T (2011) Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters. Water Res 45:5773–5784

    Article  CAS  Google Scholar 

  • Gao J, Zhong SH (2001) Supported dicopper(II) complex catalyst Cu2(II)(m-Br)2/SiO2: synthesis, characterization and catalytic properties for synthesis of ethylene carbonate. Appl Catal A Gen 220:1–8

    Article  CAS  Google Scholar 

  • Gu HH, Qiu H, Tian T, Zhan SS, Deng THB, Chaney RL, Wang SZ, Tang YT, Morel JL, Qiu RL (2011) Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere 83:1234–1240

    Article  CAS  Google Scholar 

  • Gyollai I, Krebsz M, Kereszturi Á, Bérczi S, Gucsik A (2010) FTIR-ATR spectroscopy of shock vein in Mócs L6 chondrite. J Geophys Res 116:E08010

    Google Scholar 

  • Hamon RE, McLaughlin MJ, Cozens G (2002) Mechanisms of attenuation of metal availability in in situ remediation treatments. Environ Sci Technol 36:3991–3996

    Article  CAS  Google Scholar 

  • Heidari A, Younesi H, Mehraban Z (2009) Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem Eng J 153:70–79

    Article  CAS  Google Scholar 

  • Hu C, Zhu P, Cai M, Hu H, Fu Q (2017) Comparative adsorption of Pb(II), Cu(II) and Cd(II) on chitosan saturated montmorillonite: kinetic, thermodynamic and equilibrium studies. Appl Clay Sci 143:320–326

    Article  CAS  Google Scholar 

  • Kilislioglu A, Bilgin B (2003) Thermodynamic and kinetic investigation of uranium adsorption on amberlite IR-118-H resin. Appl Radiat Isot 50:155–160

    Article  Google Scholar 

  • Lei C, Yan B, Chen T, Quan S-X, Xiao X-M (2015) Comprehensive utilization of lead–zinc tailings, part 1: pollution characteristics and resource recovery of sulfur. J Environ Chem Eng 3:862–869

    Article  CAS  Google Scholar 

  • Lei C, Yan B, Chen T, Xiao XM (2017) Recovery of metals from the roasted lead-zinc tailings by magnetizing roasting followed by magnetic separation. J Clean Prod 158:73–80

    Article  CAS  Google Scholar 

  • Lei C, Yan B, Chen T, Wang X-L, Xiao X-M (2018) Silver leaching and recovery of valuable metals from magnetic tailings using chloride leaching. J Clean Prod 181:408–415

    Article  CAS  Google Scholar 

  • Liang X, Xu Y, Sun G, Wang L, Sun Y, Qin X (2009) Preparation, characterization of thiol-functionalized silica and application for sorption of Pb2+ and Cd2+. Colloids Surf A Physicochem Eng Asp 349:61–68

    Article  CAS  Google Scholar 

  • Liu Y, Fu R, Sun Y, Zhou X, Baig SA, Xu X (2016) Multifunctional nanocomposites Fe3O4@SiO2-EDTA for Pb(II) and Cu(II) removal from aqueous solutions. Appl Surf Sci 369:267–276

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  Google Scholar 

  • Monika FM, Baccaro S, Sharma G, Thind KS, Singh DP (2012) Role of aluminium oxide in the structure of heavy metal oxide borosilicate glasses. Phys Status Solidi 209:1438–1444

    Article  CAS  Google Scholar 

  • Naseem R, Tahir S (2001) Removal of Pb (II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Res 35:3982–3986

    Article  CAS  Google Scholar 

  • Neumann D, Zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692

    Article  CAS  Google Scholar 

  • Nguyen TC, Loganathan P, Nguyen TV, Vigneswaran S, Kandasamy J, Naidu R (2015) Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chem Eng J 270:393–404

    Article  CAS  Google Scholar 

  • Ning D, Liang Y, Liu Z, Xiao J, Duan A (2016) Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-immobilization in a Paddy soil. PLoS One 11:e0168163

    Article  CAS  Google Scholar 

  • Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272

    Article  CAS  Google Scholar 

  • Rodríguez Martín JA, De Arana C, Ramos-Miras JJ, Gil C, Boluda R (2015) Impact of 70 years urban growth associated with heavy metal pollution. Environ Pollut 196:156–163

    Article  CAS  Google Scholar 

  • Sakoda T, Oda M (1969) Spectrophotometric determination of silicon in white cast iron with molybdenum blue method. Bunseki Kagaku 18:256–258

    Article  CAS  Google Scholar 

  • Shim J, Shea PJ, Oh BT (2014) Stabilization of heavy metals in mining site soil with silica extracted from corn cob. Water Air Soil Pollut 225:1–12

    Article  CAS  Google Scholar 

  • Tang F-J, Qu H-J, Zhang Z-Y (2006) Summary about the silicon fertilizer production. J Heilongjiang Aug First Land Reclamation Univ 4:018

    Google Scholar 

  • Tatzber M, Stemmer M, Spiegel H, Katzlberger C, Haberhauer G, Gerzabek M (2007) An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ Chem Lett 5:9–12

    Article  CAS  Google Scholar 

  • Unlü N, Ersoz M (2006) Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J Hazard Mater 136:272–280

    Article  CAS  Google Scholar 

  • US E (1996): Method 3052: microwave assisted and digestion of siliceous and organically based matrices, Washington, DC

  • Yoon MY, Lee S, Choo JH, Jang H, Cho W, Kang H, Park J-K (2016) Economical synthesis of complex silicon fertilizer by unique technology using loess. Korean J Chem Eng 33:958–963

    Article  CAS  Google Scholar 

  • Zheng H, Han L, Ma H, Zheng Y, Zhang H, Liu D, Liang S (2008) Adsorption characteristics of ammonium ion by zeolite 13X. J Hazard Mater 158:577–584

    Article  CAS  Google Scholar 

  • Zolfaghari G, Esmaili-Sari A, Anbia M, Younesi H, Amirmahmoodi S, Ghafari-Nazari A (2011) Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon. J Hazard Mater 192:1046–1055

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong provincial science and technology program (No. 2014B090901040, 2015B090922005), National Natural Science Foundation of China (No. 41503116), Guangdong Natural Science Funds for Distinguished Young Scholar (No. S2013050014122), “Guangdong Te Zhi program” youth science and technology talent of project (No. 2014TQ01Z262), and Guangzhou science and technology program (201607020003). This is contribution No. IS-2536 from GIGCAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yan.

Additional information

Responsible editor: Guilherme L. Dotto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, C., Yan, B., Chen, T. et al. Preparation and adsorption characteristics for heavy metals of active silicon adsorbent from leaching residue of lead-zinc tailings. Environ Sci Pollut Res 25, 21233–21242 (2018). https://doi.org/10.1007/s11356-018-2194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2194-9

Keywords

Navigation