Skip to main content

Advertisement

Log in

Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We measured the occurrence and seasonal variations of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in different environmental compartments within the limits of an agricultural basin. This topic is of high relevance since glyphosate is the most applied pesticide in agricultural systems worldwide. We were able to quantify the seasonal variations of glyphosate that result mainly from endo-drift inputs, that is, from direct spraying either onto genetically modified (GM) crops (i.e., soybean and maize) or onto weeds in no-till practices. We found that both glyphosate and AMPA accumulate in soil, but the metabolite accumulates to a greater extent due to its higher persistence. Knowing that glyphosate and AMPA were present in soils (> 93% of detection for both compounds), we aimed to study the dispersion to other environmental compartments (surface water, stream sediments, and groundwater), in order to establish the degree of non-point source pollution. Also, we assessed the relationship between the water-table depth and glyphosate and AMPA levels in groundwater. All of the studied compartments had variable levels of glyphosate and AMPA. The highest frequency of detections was found in the stream sediments samples (glyphosate 95%, AMPA 100%), followed by surface water (glyphosate 28%, AMPA 50%) and then groundwater (glyphosate 24%, AMPA 33%). Despite glyphosate being considered a molecule with low vertical mobility in soils, we found that its detection in groundwater was strongly associated with the month where glyphosate concentration in soil was the highest. However, we did not find a direct relation between groundwater table depth and glyphosate or AMPA detections. This is the first simultaneous study of glyphosate and AMPA seasonal variations in soil, groundwater, surface water, and sediments within a rural basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AAPRESID (2012) Asociación Argentina de Productores en Siembra Directa. http://www.aapresid.org.ar/superficie/. Accessed 20 Jul 2017

  • Albers CN, Banta GT, Hansen PE, Jacobsen OS (2009) The influence of organic matter on sorption and fate of glyphosate in soil: comparing different soils and humic substances. Environ Pollut 157:2865–2870

    Article  CAS  Google Scholar 

  • Al-Rajab AJ, Schiavon M (2010) Degradation of 14C-glyphosate and aminomethylphosphonic acid (AMPA) in three agricultural soils. J Environ Sci 22(9):1374–1380

    Article  CAS  Google Scholar 

  • Aparicio VC, De Gerónimo E, Marino D, Primost J, Carriquiriborde P, Costa JL (2013) Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93:1866–1873

    Article  CAS  Google Scholar 

  • AquaCrop FAO (2017) AquaCrop training handbook I. Understanding AquaCrop. FAO, Rome, pp 12

    Google Scholar 

  • Araujo ASF, Monteiro RTR, Abarkeli RB (2003) Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804

    Article  CAS  Google Scholar 

  • Argentinean Agroindustry Ministry (2016) Open data source of agroindustry. Presidency of the Nation. http://datos.magyp.gob.ar/reportes.php Accessed 15 Jul 2017

  • Arias AH, Marcovecchio JE, Pereira MT, Buzzi NS (2011) Pesticides reaching the environment as a consequence of inappropriate agricultural practices in Argentina. In: Stoytcheva M (ed) Pesticides—formulations, effects, fate. InTech, Rijeka, pp 313–332

    Google Scholar 

  • Aronsson H, Stenberg M, Ulén B (2011) Leaching of N, P and glyphosate from two soils after herbicide treatment and incorporation of a ryegrass catch crop. Soil Use Manag 27:54–68

    Article  Google Scholar 

  • Battaglin WA, Meyer MT, Kuivila KM, Dietze JE (2014) Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation. J Am Water Resour Assoc 50(2):275–290

    Article  CAS  Google Scholar 

  • Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28:3

    Article  CAS  Google Scholar 

  • Bento CP, Yang X, Gort G, Xue S, van Dam R, Zomer P, Geissen V (2016) Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Sci Total Environ 572:301–311

    Article  CAS  Google Scholar 

  • Bento CP, Goossens D, Rezaei M, Riksen M, Mol HG, Ritsema CJ, Geissen V (2017) Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil. Environ Pollut 220:1079–1089

    Article  CAS  Google Scholar 

  • Bergstrӧm L, Bӧrjesson E, Stenstrӧm J (2011) Laboratory and lysimeter studies of glyphosate and aminomethylphosphonic acid in a sand and a clay soil. J Environ Qual 40:98–108

    Article  CAS  Google Scholar 

  • Binimelis R, Pengue W, Monterroso I (2009) “Transgenic treadmill”: responses to the emergence and spread of glyphosate-resistant johnsongrass in Argentina. Geoforum 40:623–633

    Article  Google Scholar 

  • Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456

    Article  CAS  Google Scholar 

  • CASAFE (2012) Cámara de Sanidad Agropecuaria y Fertilizantes, Argentina. http://www.casafe.org/publicaciones/estadisticas/ Accessed 20 Mar 2017

  • Ccanccapa A, Masiá A, Andreu V, Picó Y (2016) Spatio-temporal patterns of pesticide residues in the Turia and Júcar rivers (Spain). Sci Total Environ 540:200–210

    Article  CAS  Google Scholar 

  • Council Directive 91/414/EEC, European Union, Brussels (1991)

  • Coupe RH, Kalkhoff SJ, Capel PD, Gregoire C (2012) Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag Sci 68:16–30

    Article  CAS  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle size analysis. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd ed Agronomy Madison USA, 383–411

  • Gjettermann B, Petersen CT, Koch CB, Spliid NH, Grøn C, Baun DL, Styczen M (2009) Particle-facilitated pesticide leaching from differently structured soil monoliths. J Environ Qual 38:2382–2393

    Article  CAS  Google Scholar 

  • Gómez Ortiz AM, Okada E, Costa JL, Bedmar F (2017) Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina. Environ Toxicol Chem 36:2587–2592

    Article  CAS  Google Scholar 

  • Guidelines for Canadian Drinking Water Quality – Summary Table (2014) Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment. http://wwwhc-scgcca/ewh-semt/pubs/water-eau/sum_guide-res_recom/index-engphp Accessed 29 Sept 2017

  • Hanke I, Singer H, Hollender J (2008) Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography–tandem mass spectrometry: performance tuning of derivatization, enrichment and detection. Anal Bioanal Chem 391(6):2265–2276

    Article  CAS  Google Scholar 

  • Hanke I, Wittmer I, Bischofberger S, Stamm C, Singer H (2010) Relevance of urban glyphosate use for surface water quality. Chemosphere 81(3):422–429

    Article  CAS  Google Scholar 

  • Hernández M, Fasano J, Bocanegra E (1991) Overexploitation effects on the quaternary aquifer of Mar del Plata (Argentina). XXIII IAH Congress, Spain 1:431–435

  • Himel CM (1974) Analytical methodology in ULV. Br Crop Prot Monogr 11:112–119

    Google Scholar 

  • InfoStat (2008) InfoStat professional, versión 1.1. Manual del Usuario. Argentina, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba

    Google Scholar 

  • INTA (2002) Carta de suelos de la república Argentina. Series de suelo Mar del Plata Soil Institute INTA http://anteriorintagovar/suelos/cartas/series/Mar_del_Platahtm Accessed: 15 Mar 2017

  • Kjaer J, Vibeke E, Jacobesen OH, Hansen N, de Jonge LW, Olsen P (2011) Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils. Chemosphere 84:471–479

    Article  CAS  Google Scholar 

  • Kolpin DW, Thurman EM, Lee EA, Meyer MT, Furlong ET, Glassmeyer ST (2006) Urban contributions of glyphosate and its degradate AMPA to streams in the United States. Sci Total Environ 354(2):191–197

    Article  CAS  Google Scholar 

  • Liu CM, McLean PA, Sookdeo CC, Cannon FC (1991) Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbial 57:745–749

    Google Scholar 

  • Lupi L, Miglioranza KS, Aparicio VC, Marino D, Bedmar F, Wunderlin DA (2015) Occurrence of glyphosate and AMPA in an agricultural watershed from the southeastern region of Argentina. Sci Total Environ 536:687–694

    Article  CAS  Google Scholar 

  • Mamy L, Barriuso E, Gabrielle B (2005) Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops. Pest Manag Sci 61(9):905–916

    Article  CAS  Google Scholar 

  • Mamy L, Barriuso E, Gabrielle B (2016) Glyphosate fate in soils when arriving in plant residues. Chemosphere 154:425–433

    Article  CAS  Google Scholar 

  • Maqueda C, Undabeytia T, Villaverde J, Morillo E (2017) Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Sci Total Environ 593:787–795

    Article  CAS  Google Scholar 

  • Massone H (2003) Geología y Planificación Territorial en la Cuenca Superior del Arroyo Grande, Provincia de Buenos Aires (Geology and territorial planification of the upper basin of Arroyo Grande, Province of Buenos Aires). Doctoral Thesis. National University of La Plata, pp 276

  • Messing PG, Farenhorst A, Waite DT, McQueen DR, Sproull JF, Humphries DA, Thompson LL (2011) Predicting wetland contamination from atmospheric deposition measurements of pesticides in the Canadian Prairie Pothole region. Atmos Environ 45(39):7227–7234

    Article  CAS  Google Scholar 

  • Montgomery JH (1993) Agrochemical desk reference: environmental data. Lewis, Chelsea, Michigan pp 625

  • Nowack B (2003) Environmental chemistry of phosphonates. Water Res 37:2533–2546

    Article  CAS  Google Scholar 

  • Okada E, Costa JL, Bedmar F (2016) Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma 263:78–85

    Article  CAS  Google Scholar 

  • Okada E, Costa JL, Bedmar F (2017) Glyphosate dissipation in different soils under no-till and conventional tillage. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60430-2

  • Olivo VE, Tansini A, Carasek F, Cordenuzzi D, Fernandes S, Fiori MA, Fragoso A, Magro JD (2015) Rapid method for determination of glyphosate in groundwater using high performance liquid chromatography and solid-phase extraction after derivatization. Revista Ambiente & Água 10(2):286–297

  • Pérez DJ, Okada E, De Gerónimo E, Menone ML, Aparicio VC, Costa JL (2017a) Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina. Environ Toxicol Chem 36:3206–3216

    Article  CAS  Google Scholar 

  • Pérez DJ, Okada E, Menone ML, Costa JL (2017b) Can an aquatic macrophyte bioaccumulate glyphosate? Development of a new method of glyphosate extraction in Ludwigia peploides and watershed scale validation. Chemosphere 185:975–982

    Article  CAS  Google Scholar 

  • Poiger T, Buerge IJ, Bächli A, Müller MD, Balmer ME (2017) Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS. Environ Sci Pollut Res 24(2):1588–1596

    Article  CAS  Google Scholar 

  • Primost JE, Marino DJ, Aparicio VC, Costa JL, Carriquiriborde P (2017) Glyphosate and AMPA, “pseudo-persistent” pollutants under real-world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina. Environ Pollut 229:771–779

    Article  CAS  Google Scholar 

  • Rampoldi EA, Hang S, Barriuso E (2011) The fate of glyphosate in crop residues. Soil Sci Soc Am J 75:553–559

    Article  CAS  Google Scholar 

  • Romanelli A, Massone HE, Qutrozl OM (2011) Integrated hydrogeological study of surface & ground water resources in the southeastern Buenos Aires Province, Argentina. Int J Environ Res 5(4):1053–1064

    CAS  Google Scholar 

  • Ronco AE, Marino DJG, Abelando M, Almada P, Apartin CD (2016) Water quality of the main tributaries of the Paraná Basin: glyphosate and AMPA in surface water and bottom sediments. Environ Monit Assess 188(8):1–13

    Article  CAS  Google Scholar 

  • Rueppel ML, Brightwell BB, Schaefer J, Marvel TT (1977) Metabolism and degradation of glyphosate in soil and water. J Agric Food Chem 25:517–528

    Article  CAS  Google Scholar 

  • Sainz Rozas HR, Echeverria HE, Angelini HP (2011) Niveles de carbono orgánico y pH en suelos agrícolas de las regiones pampeana y extrapampeana argentina. Ciencia del Suelo 29:29–37

    Google Scholar 

  • Sala JM (1975) Recursos Hídricos (especial mención de las aguas subterráneas) [Water Resources (special reference to groundwater)]. Relatorio Geología de la Provincia de Buenos Aires, IV Congreso Geológico Argentino, Buenos Aires pp 169

  • Sanchís J, Kantiani L, Llorca M, Rubio F, Ginebreda A, Fraile J, Garrido T, Farré M (2012) Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 402(7):2335–2345

    Article  CAS  Google Scholar 

  • Schulte EE, Hopkins BG (1996) Estimation of organic matter by weight loss-on-ignition. In: Magdoff FR, Tabatsai MA, Hanlon EA (eds) Soil organic matter: analysis and interpretation. SSSA Inc, Madison, pp 21–31

    Google Scholar 

  • Sidoli P, Baran N, Angulo-Jaramillo R (2016) Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules. Environ Sci Pollut Res 23(6):5733–5742

    Article  CAS  Google Scholar 

  • Simonsen L, Fomsgaard I, Svensmark B, Spliid NH (2008) Fate and availability of glyphosate and AMPA in agricultural soil. J Environ Sci Health B 43:365–375

    Article  CAS  Google Scholar 

  • Smith AE, Aubin AJ (1993) Degradation of 14C-glyphosate in Saskatchewan soils. Bull Environ Contam Toxicol 50:499–505

    CAS  Google Scholar 

  • Struger J, Van Stempvoort DR, Brown SJ (2015) Sources of aminomethylphosphonic acid (AMPA) in urban and rural catchments in Ontario, Canada: glyphosate or phosphonates in wastewater? Environ Pollut 204:289–297

    Article  CAS  Google Scholar 

  • US EPA (2002) Edition of the drinking water standards and health advisories. EPA 822-R-02-038, Office of Water, USEPA, Washington, D.C., p 12

    Google Scholar 

  • Van Stempvoort DR, Roy JW, Brown SJ, Bickerton G (2014) Residues of the herbicide glyphosate in riparian groundwater in urban catchments. Chemosphere 95:455–463

    Article  CAS  Google Scholar 

  • Van Stempvoort DR, Spoelstra J, Senger ND, Brown SJ, Post R, Struger J (2016) Glyphosate residues in rural groundwater, Nottawasaga River Watershed, Ontario, Canada. Pest Manag Sci 72:1862–1872. https://doi.org/10.1002/ps.4218

    Article  CAS  Google Scholar 

  • Vereecken H (2005) Review. Mobility and leaching of glyphosate: a review. Pest Manag Sci 61:1139–1151

    Article  CAS  Google Scholar 

  • Wang S, Seiwert B, Kästner M, Miltner A, Schäffer A, Reemtsma T, Yang Q, Nowak KM (2016) (bio) degradation of glyphosate in water-sediment microcosms—a stable isotope co-labeling approach. Water Res 99:91–100

    Article  CAS  Google Scholar 

  • Yang X, Wang F, Bento CP, Xue S, Gai L, van Dam R, Mol H, Ritsema CJ, Geissen V (2015) Short-term transport of glyphosate with erosion in Chinese loess soil—a flume experiment. Sci Total Environ 512:406–414

    Article  CAS  Google Scholar 

  • Yu Y, Zhou QX (2005) Adsorption characteristics of pesticides methamidophos and glyphosate by two soils. Chemosphere 58:811–816

    Article  CAS  Google Scholar 

  • Zablotowicz RM, Accinelli C, Krutz LJ, Reddy KN (2009) Soil depth and tillage effects on glyphosate degradation. J Agric Food Chem 57:4867–4871

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank L. Alonso for field assistance. E. Okada holds a Postdoctoral Fellowship CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) and an Endeavour Research Fellowship (5911_2017). Funding was provided by INTA-PNSuelo 1134044 (Instituto Nacional de Tecnología Agropecuaria-INTA) and from PICT 2014-1462 and PICT 2014-1460 (Fondo para la Investigación Científica y Tecnológica-FONCYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Okada.

Additional information

Responsible editor: Roland Peter Kallenborn

Electronic supplementary material

ESM 1

(DOC 886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okada, E., Pérez, D., De Gerónimo, E. et al. Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina. Environ Sci Pollut Res 25, 15120–15132 (2018). https://doi.org/10.1007/s11356-018-1734-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1734-7

Keywords

Navigation