Skip to main content
Log in

Distribution and human health risk assessment of PAHs in four fish species from a SW Atlantic estuary

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study is to assess—for the first time—the concentration of the 16 polycyclic aromatic hydrocarbons (PAHs) in the muscle tissues of four fish species (Micropogonias furnieri, Cynoscion guatucupa, Ramnogaster arcuata, and Mustelus schmitti) from Bahía Blanca estuary, Argentina and to evaluate their sources, distribution, and the human health risks implicated. Considering the four species under study, mean total PAH concentrations showed the following decreasing accumulation trend: M. schmitti, R. arcuata, C. guatucupa, and M. furnieri. Low molecular weight PAHs, such as naphthalene and phenanthrene, were generally predominant, displaying properties of PAH mixtures generated from petrogenic pollution. Of the four fish species analyzed, M. furnieri was the only one that did not raise any human consumption warning. In the case of the other species, exceeding values were found above the safety human consumption guidelines. Nevertheless, the screening criteria for carcinogenic PAHs proposed by the USEPA indicated a good quality status for these fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arias AH, Spetter CV, Freije RH, Marcovecchio JE (2009) Polycyclic aromatic hydrocarbons in water, mussels (Brachidontes sp., Tagelus sp.) and fish (Odontesthes sp.) from Bahía Blanca estuary, Argentina. Estuar Coast Shelf Sci 85(1):67–81

    Article  CAS  Google Scholar 

  • Arias AH, Vazquez-Botello A, Tombesi N, Ponce-Velez G, Freije H, Marcovecchio J (2010a) Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahía Blanca estuary. Argentina Environ Monit Assess 160(1):301–314

    Article  CAS  Google Scholar 

  • Arias AH, Marcovecchio JE, Freije RH, Ponce-Velez G, Vázquez BA (2010b) Análisis de fuentes y toxicidad equivalente de sedimentos contaminados con PAHs en el estuario de Bahía Blanca, Argentina. Hidrobiológica 20(1):41–56

    Google Scholar 

  • Abdolahpur Monikh F, Hosseini M, Kazemzadeh Khoei J, Ghasemi AF (2014) Polycyclic aromatic hydrocarbons levels in sediment, benthic, benthopelagic and pelagic fish species from the Persian Gulf. Int J Environ Res 8(3):839–848

    Google Scholar 

  • Ashley JT, Horwitz R, Steinbacher JC, Ruppel B (2003) A comparison of congeneric PCB patterns in American eels and striped bass from the Hudson and Delaware River estuaries. Mar Pollut Bull 46(10):1294–1308

    Article  CAS  Google Scholar 

  • Bandowe BAM, Bigalke M, Boamah L, Nyarko E, Saalia FK, Wilcke W (2014) Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): bioaccumulation and health risk assessment. Environ Int 65:135–146

    Article  CAS  Google Scholar 

  • Barhoumi B, Clerandeau C, Gourves PY, Le Menach K, El Megdiche Y, Peluhet L, Budzinski H, Baudrimont M, Driss MR, Cachot J (2014) Pollution biomonitoring in the Bizerte lagoon (Tunisia), using combined chemical and biomarker analyses in grass goby, Zosterisessor ophiocephalus (Teleostei, Gobiidae). Mar Environ Res 101:184–195

    Article  CAS  Google Scholar 

  • Barhoumi B, El Megdiche Y, Clérandeau C, Ameur WB, Mekni S, Bouabdallah S, Driss MR (2016) Occurrence of polycyclic aromatic hydrocarbons (PAHs) in mussel (Mytilus galloprovincialis) and eel (Anguilla anguilla) from Bizerte lagoon, Tunisia, and associated human health risk assessment. Cont Shelf Res 124:104–116

    Article  Google Scholar 

  • Baumard P, Budzinski H, Garrigues P, Sorbe JC, Burgeot T, Bellocq J (1998) Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level. Mar Pollut Bull 36(12):951–960

    Article  CAS  Google Scholar 

  • Boitsov S, Jensen HKB, Klungsøyr J (2009) Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of south-western Barents Sea. Mar Environ Res 68(5):236–245

    Article  CAS  Google Scholar 

  • Bruner KA, Fisher SW, Landrum PF (1994) The role of the zebra mussel, Dreissena polymorpha, in contaminant cycling: I. The effect of body size and lipid content on the bioconcentration of PCBs and PAHs. J Gt Lakes Res 20(4):725–734

    Article  CAS  Google Scholar 

  • Castro-Gutiérrez VM, Rodríguez-Rodríguez CE, Vargas-Azofeifa I (2012) Hydrocarbon degrading microflora in a tropical fuel-contaminated aquifer: assessing the feasibility of PAH bioremediation. Int J Environ Res 6(1):345–352

  • Cheung KC, Leung HM, Kong KY, Wong MH (2007) Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong markets and their health risk assessment. Chemosphere 66(3):460–468

    Article  CAS  Google Scholar 

  • Connell DW, Miller GJ (1984) Chemistry and ecotoxicology of pollution (vol. 65). John Wiley & Sons

  • Da Silva TF, de Almeida AD, de Aquino Neto FR (2007) Polycyclic aromatic hydrocarbons in fishes and sediments from the Guanabara Bay, Brazil. Environ Forensics 8(3):257–264

    Article  Google Scholar 

  • Dahle S, Savinov VM, Matishov GG, Evenset A, Næs K (2003) Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay. Sci Total Environ 306(1):57–71

    Article  CAS  Google Scholar 

  • Delistraty D (1997). A critical review of the application of toxic equivalency factors to carcinogenic effects of polycyclic aromatic hydrocarbons in mammals. In: Neilson, A.H. (Ed.), The handbook of environmental chemistry Vol 3, Anthropogenic compounds, Par J: PAHs and related compounds: biology. Springer Science & Business Media, pp. 311–359

  • Escartin E, Porte C (1999) Assessment of PAH pollution in coastal areas from the NW Mediterranean through the analysis of fish bile. Mar Pollut Bull 38(12):1200–1206

    Article  CAS  Google Scholar 

  • FAO (2016) Food and Agriculture Organization of the United Nations. El estado mundial de la pesca y la acuicultura 2016. Contribución a la seguridad alimentaria y la nutrición para todos. Roma. 224 pp

  • Fu CT, Wu SC (2005) Bioaccumulation of polychlorinated biphenyls in mullet fish in a former ship dismantling harbour, a contaminated estuary, and nearby coastal fish farms. Mar Pollut Bull 51(8):932–939

    Article  CAS  Google Scholar 

  • Hellou J, Yeats P, Steller S, Gagné F (2003) Chemical contaminants and biological indicators of mussel health during gametogenesis. Environ Toxicol Chem 22:2080–2087

    Article  CAS  Google Scholar 

  • Hoffman DJ (2003) Handbook of ecotoxicology. CRC Press, Boca Raton, Florida

    Google Scholar 

  • IARC (2010). International Agency for Research on Cancer. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures, vol 92. http://monographs.iarc.fr/ENG/Monographs/vol92/mono92.pdf.

  • Johnson-Restrepo B, Olivero-Verbel J, Lu S, Guette-Fernández J, Baldiris-Avila R, O'Byrne-Hoyos I, Aldous MK, Addink R, Kannan K (2008) Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environ Pollut 151(3):452–459

    Article  CAS  Google Scholar 

  • Klumpp DW, Huasheng H, Humphrey C, Xinhong W, Codi S (2002) Toxic contaminants and their biological effects in coastal waters of Xiamen, China.: I. Organic pollutants in mussel and fish tissues. Mar. Pollut. Bull 44(8):752–760

    CAS  Google Scholar 

  • Limbozzi F, Leitào TE (2008). Characterization of Bahía Blanca main existing pressures and their effects on the state indicators for surface and groundwater quality. En: Neves, R., Baretta, J., Mateus, M. (Eds.), Perspectives on integrated coastal zone management in South America, Lisboa, 315–331.

  • Logan DT (2007) Perspective on ecotoxicology of PAHs to fish. Hum Ecol Risk Assess 13(2):302–316

    Article  CAS  Google Scholar 

  • Lopez Cazorla, A. (1987). Contribución al conocimiento de la ictiofauna marina del área de Bahía Blanca. PhD thesis, Universidad Nacional de La Plata, Argentina, 247 pp.

  • Lopez Cazorla AL (1996) The food of Cynoscion striatus (Cuvier) (Pisces: Sciaenidae) in the Bahía Blanca area, Argentina. Fish Res 28(4):371–379

    Article  Google Scholar 

  • Lopez Cazorla A (2000) Age structure of the population of weakfish Cynoscion guatucupa (Cuvier) in the Bahía Blanca waters, Argentina. Fish Res 46(1–3):279–286

    Article  Google Scholar 

  • Lopez Cazorla A (2004) Peces. In: Piccolo CM, Hoffmeyer MS (Eds.). Ecosistema del estuario de Bahía Blanca, Instituto Argentino de Oceanografía, Bahía Blanca, 191–201

  • Lopez Cazorla A, Pettigrosso RE, Tejera L, Camina R (2011) Diet and food selection by Ramnogaster arcuata (Osteichthyes, Clupeidae). J Fish Biol 78(7):2052–2066

    Article  CAS  Google Scholar 

  • Lopez Cazorla AL, Sidorkewicj N (2009) Some biological parameters of Jenyns’ sprat Ramnogaster arcuata (Pisces: Clupeidae) in south-western Atlantic waters. Marine Biodiversity Records 2:e127

    Article  Google Scholar 

  • Marcovecchio JE, Botté S, Delucchi F, Arias A, Fernández Severini M, De Marco S, Tombesi N, Andrade S, Ferrer L, Freije RH (2008) Pollution processes in Bahía Blanca Estuarine environment. In: Neves R, Baretta J, Mateus M (Eds) Perspectives on integrated coastal zone management in South America, Lisbon, pp 303–316

  • Martorell I, Perelló G, Martí-Cid R, Castell V, Llobet JM, Domingo JL (2010) Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: temporal trend. Environ Int 36(5):424–432

    Article  CAS  Google Scholar 

  • Meador JP, Casillas E, Sloan CA, Varanasi U (1995) Comparative bioaccumulation of polycyclic aromatic hydrocarbons from sediment by two infaunal invertebrates. Mar Ecol Prog Ser 123:107–124

    Article  CAS  Google Scholar 

  • Meniconi MFG, Santos AF, Moreira IMN, Scofield ADL, Salmito TM, Romão CM, Machado GAWC. (2001) Fisheries safety monitoring in the Guanabara Bay, Brazil following a marine fuel oil spill. In International Oil Spill Conference (March 2001, Vol. 2001, No. 2, pp. 951–957). American Petroleum Institute

  • Molinero A, Flos R (1992) Influence of season on the feeding habits of the common sole Solea solea. Mar Biol 113:499–507

    Article  Google Scholar 

  • Neff JM (1985) Polycyclic aromatic hydrocarbons. In: Rand GM, Petrocelli SR (eds) Fundamentals of aquatic toxicology, methods and applications. Hemisphere Publishing Corporation (McGraw-Hill International Book Company), Washington, New York, London, pp 416–454

    Google Scholar 

  • Neff JM, Stout SA, Gunster DG (2005) Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integr Environ Assess Manag 1(1):22–33

    Article  CAS  Google Scholar 

  • Nisbet IC, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16(3):290–300

    Article  CAS  Google Scholar 

  • Oliva AL, Quintas PY, La Colla NS, Arias AH, Marcovecchio JE (2015a) Distribution, sources, and potential ecotoxicological risk of polycyclic aromatic hydrocarbons in surface sediments from Bahía Blanca estuary, Argentina. Arch Environ Contam Toxicol 69(2):163–172

    Article  CAS  Google Scholar 

  • Oliva AL, Ovaert J, Arias AH, Souissi S, Marcovecchio JE (2015b) Mussels as Bioindicators of PAHs pollution within Argentinean coastal environments, South America. Int J Environ Res 9(4):1293–1304

    CAS  Google Scholar 

  • Oluseyi T, Olayinka K, Alo B, Smith RM (2011) Improved analytical extraction and clean-up techniques for the determination of PAHs in contaminated soil samples. Int. J. Environ. Res. 5(3):681–690

    CAS  Google Scholar 

  • Owabor CN, Ogbeide SE, Susu AA (2010) Model simulation of biodegradation of polycyclic aromatic hydrocarbon in a microcosm. Int. J. Environ. Res. 4(4):807–816

    CAS  Google Scholar 

  • Peters CA, Knightes CD, Brown DG (1999) Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environ Sci Technol 33:4499–4507

    Article  CAS  Google Scholar 

  • Porte C, Albaiges J (1993) Bioaccumulation patterns of hydrocarbons and polychlorinated biphenyls in bivalves, crustaceans, and fishes. Arch Environ Contam Toxicol 26(3):273–281

    Google Scholar 

  • Ramalhosa MJ, Paíga P, Morais S, Delerue-Matos C, Prior Pinto Oliveira MB (2009) Analysis of polycyclic aromatic hydrocarbons in fish: Evaluation of a quick, easy, cheap, effective, rugged, and safe extraction method. J Sep Sci 32(20):3529–3538

    Article  CAS  Google Scholar 

  • Ramalhosa MJ, Paíga P, Morais S, Ramos S, Delerue-Matos C, Oliveira MBPP (2012) Polycyclic aromatic hydrocarbon levels in three pelagic fish species from Atlantic Ocean: inter-specific and inter-season comparisons and assessment of potential public health risks. Food Chem Toxicol 50(2):162–167

    Article  CAS  Google Scholar 

  • Sanders M, Sivertsen S, Scott G (2002) Origin and distribution of polycyclic aromatic hydrocarbons in surficial sediments from the Savannah River. Arch Environ Contam Toxicol 43:438–448

    Article  CAS  Google Scholar 

  • Sardiña P, Lopez Cazorla AL (2005a) Feeding habits of the juvenile striped weakfish, Cynoscion guatucupa Cuvier 1830, in Bahía Blanca estuary (Argentina): seasonal and ontogenetic changes. Hydrobiologia 532(1–3):23–38

    Article  Google Scholar 

  • Sardiña P, Lopez Cazorla AL (2005b) Trophic ecology of the whitemouth croaker, Micropogonias furnieri (Pisces: Sciaenidae), in south-western Atlantic waters. J Mar Biol Assoc UK 85(02):405–413

    Article  Google Scholar 

  • Sauer TC, Brown JS, Boehm PD, Aurand DV, Michel J, Hayes MO (1993). Hydrocarbon characterization of intertidal and subtidal sediment of Saudi Arabia from the Gulf War oil spill, vol. II. Marine Spill Response Corporation, Washington DC, MSRC Technical Report Series

  • Shi J, Zheng GJS, Wong MH, Liang H, Li Y, Wu Y, Li P, Liu W (2016) Health risks of polycyclic aromatic hydrocarbons via fish consumption in Haimen bay (China), downstream of an e-waste recycling site (Guiyu). Environ Res 147:233–240

    Article  CAS  Google Scholar 

  • Soares-Gomes A, Neves RL, Aucélio R, Van Der Ven PH, Pitombo FB, Mendes CL, Ziolli RL (2010) Changes and variations of polycyclic aromatic hydrocarbon concentrations in fish, barnacles and crabs following an oil spill in a mangrove of Guanabara Bay, Southeast Brazil. Mar Pollut Bull 60(8):1359–1363

    Article  CAS  Google Scholar 

  • Soclo HH, Budzinski H, Garrigues P, Matsuzawa S (2008) Biota accumulation of polycyclic aromatic hydrocarbons in Benin coastal waters. Polycycl Aromat Compd 28(2):112–127

    Article  CAS  Google Scholar 

  • Spacie A, Hamelink JL (1982) Alternative models for describing the bioconcentration of organics in fish. Environ Toxicol Chem 1:309–320

    Article  CAS  Google Scholar 

  • Sprung M (1993) The other life: an account of present knowledge of the larval phase of Dreissena polymorpha. In: Nalepa TF, Schloesser DW (eds) Zebra mussels: biology, impacts and control. Lewis Publishers, USA, pp 39–54

    Google Scholar 

  • Storelli MM, Barone G, Perrone VG, Storelli A (2013) Risk characterization for polycyclic aromatic hydrocarbons and toxic metals associated with fish consumption. J Food Compos Anal 31(1):115–119

    Article  CAS  Google Scholar 

  • Thorsen WA, Cope WG, Shea D (2004) Bioavailability of PAHs: effects of soot carbon and PAH source. Environ Sci Technol 38(7):2029–2037

    Article  CAS  Google Scholar 

  • Tolosa I, De Mora SJ, Fowler SW, Villeneuve JP, Bartocci J, Cattini C (2005) Aliphatic and aromatic hydrocarbons in marine biota and coastal sediments from the Gulf and the Gulf of Oman. Mar Pollut Bull 50(12):1619–1633

    Article  CAS  Google Scholar 

  • UNEP (1993) United Nations Environment Programme. UNEP/FAO/IOC/IAEA. Guidelines for monitoring chemical contaminants in the sea using marine organisms. Reference Methods For Marine Pollution Studies No. 6, pp 28

  • USEPA (1993) Schoeny, R. and K. Poirier. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. U.S. Environmental Protection Agency, Office of Research and Development, Office of Health and Environmental Assessment, Washington, DC, EPA/600/R-93/089 (NTIS PB94116571).

  • USEPA (2000) Guidance for assessing chemical contaminant data for use in fish advisories. Risk assessment and fish consumption limits, 3th edn. Office of Water, Washington DC

    Google Scholar 

  • USEPA (2002). Polycyclic organic matter. US Environmental Protection Agency. Available from: https://www.epa.gov/sites/production/files/2016-09/documents/polycyclic-organic-matter.pdf

  • Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149

    Article  Google Scholar 

  • Varanasi U, Stein JE, Nishimoto M (1989) Biotransformation and disposition of PAH in fish. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton, FL, pp 1–40

    Google Scholar 

  • Varanasi U, Stein JE (1991) Disposition of xenobiotic chemicals and metabolites in marine organisms. Environ Health Perspect 90:93

    Article  CAS  Google Scholar 

  • Varanasi U, Brown DW, Hom T, Burrows DG, Sloan CA, Field LJ, Stein JE, Tilbury KL, McCain BB, Chan S (1993). Survey of Alaskan subsistence fish, marine mammal, and invertebrate samples collected 1989–91 for exposure to oil spilled from the Exxon Valdez, vol. 1. NOAA Technical Memorandum NMFS-NWFSC-12.

  • Vuorinen PJ, Keinanen M, Vuontisjarvi H, Barsien J, Broeg K, Forlin L, Gercken J, Kopecka J, Kohler A, Parkkonen J, Pempkowiak J, Schiedek D (2006) Use of biliary PAH metabolites as a biomarker of pollution in fish from the Baltic Sea. Mar Pollut Bull 53(8):479–487

    Article  CAS  Google Scholar 

  • Wetzel DL, Van Vleet ES (2004) Accumulation and distribution of petroleum hydrocarbons found in mussels (Mytilus galloprovincialis) in the canals of Venice. Italy Mar Pollut Bull 48(9):927–936

    Article  CAS  Google Scholar 

  • Wilcke W (2000) Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil—a review. J Plant Nutr Soil Sci 163(3):229–248

    Article  CAS  Google Scholar 

  • Wilcke W (2007) Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma 141(3):157–166

    Article  CAS  Google Scholar 

  • Xu FL, Wu WJ, Wang JJ, Qin N, Wang Y, He QS, He W, Tao S (2011) Residual levels and health risk of polycyclic aromatic hydrocarbons in freshwater fishes from Lake Small Bai-Yang-Dian, Northern China. Ecol Model 222(2):275–286

    Article  CAS  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Practice Hall, New Jersey b25

    Google Scholar 

  • Zhang Y, Li F, Wang J (2011) Determination of retardation effect of SOM on aqueous leaching of polycyclic aromatic hydrocarbons using confocal laser scanning microscope. Int J Environ Res 5(4):999–1008

    CAS  Google Scholar 

  • Zhao Z, Zhang L, Cai Y, Chen Y (2014) Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment. Ecotox Environ Safe 104:323–331

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded through research grants by National Agency for Promotion of Science and Technology-ANCPCyT (Grant No. PICT 2015-0709) and the Secretaría de Ciencia y Técnica, Universidad Nacional del Sur (Grant No. PGI 2016-19-24ZQ12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana L. Oliva.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliva, A.L., La Colla, N.S., Arias, A.H. et al. Distribution and human health risk assessment of PAHs in four fish species from a SW Atlantic estuary. Environ Sci Pollut Res 24, 18979–18990 (2017). https://doi.org/10.1007/s11356-017-9394-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9394-6

Keywords

Navigation