Skip to main content
Log in

Purification of Hg0 from flue gas by wet oxidation method and its mechanism: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The vast majority of Hg2+ can be removed while elemental mercury (Hg0) can hardly be removed due to its characteristic of high volatility and insolubility in water. Till now, how to oxidize Hg0 to Hg2+ is the key for the purification of Hg0, especially when there are others pollutants, such as HCl, SO2, and NOx. In this review, the method and mechanism of Hg0 purification from flue gas by H2O2, KMnO4, NaClO2, and O3 are reviewed comprehensively. It is concluded that the oxidation of Hg0 mainly depends on the electronic supply efficiency from the solution. The Fenton reagent, composed of H2O2 and metal cations, is superior to O3 and the solution of KMnO4 and NaClO2. Moreover, HCl, SO2, and NOx in the flue gas can influence the oxidation and purification mechanism of Hg0. It is found that HCl in flue gas had obvious auxo-action on the oxidation of mercury, and SO2 and NOx have different effects on the oxidation of Hg0 with the change of compositions and concentration of pollutants in the flue gas. In general, SO2 and NOx can slightly promote the oxidation of Hg0 due to the synergistic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adewuyi YG (2005) Sonochemistry in environmental remediation. 1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water. Environ Sci Technol 39:3409–3420

    Article  CAS  Google Scholar 

  • Ashraf SS, Rauf MA, Alhadrami S (2006) Degradation of methyl red using Fenton’s reagent and the effect of various salts. Dyes Pigments 69:74–78

    Article  CAS  Google Scholar 

  • Bautista P, Mohedano A, Casas J, Zazo J, Rodriguez J (2008) An overview of the application of Fenton oxidation to industrial wastewaters treatment. J Chem Technol Biotechnol 83:1323–1338

    Article  CAS  Google Scholar 

  • Bigda RJ (1995) Consider fenton's chemistry for wastewater treatment. Chemical Engineering Progress 91:12

  • Bigda RJ (1996) Fenton’s chemistry: an effective advanced oxidation process. Environ Technol 6:34–39

    Google Scholar 

  • Biswajit P, Ariya P (2003) Atmospheric reactions of gaseous mercury with ozone and hydroxyl radical: kinetics and product studies. J Phys IV 107:189–192

    CAS  Google Scholar 

  • Bokare AD, Choi W (2009) Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ Sci Technol 43:7130–7135

    Article  CAS  Google Scholar 

  • Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 275:121–135

    Article  CAS  Google Scholar 

  • Burbano AA, Dionysiou DD, Suidan MT, Richardson TL (2005) Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Res 39:107–118

    Article  CAS  Google Scholar 

  • Byun Y, Cho M, Namkung W et al (2009) Reaction pathways of NO oxidation by sodium chlorite powder. Environ Sci Technol 43:5054–5059

    Article  CAS  Google Scholar 

  • Byun Y, Lee K, Kim J, Koh DJ, Shin DN (2010) Preliminary evaluation of NaClO2 powder injection method for mercury oxidation: bench scale experiment using iron-ore sintering flue gas. Korean J Chem Eng 28:808–812

    Article  CAS  Google Scholar 

  • Byun Y, Hamilton IP, Tu X, Shin DN (2014) Formation of chlorinated species through reaction of SO2 with NaClO2 powder and their role in the oxidation of NO and Hg0. Environ Sci Pollut Res Int 21:8052–8058

    Article  CAS  Google Scholar 

  • Calvert JG (2005) Mechanisms of mercury removal by O3 and OH in the atmosphere. Atmospheric Measurement Techniques 39:3355–3367

    CAS  Google Scholar 

  • Cater SR, Stefan MI, Bolton JR, Safarzadeh-Amiri A (2000) UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters. Environ Sci Technol 34:659–662

    Article  CAS  Google Scholar 

  • Chen ZY, Mathur VK (2006) Mercury oxidization in dielectric barrier discharge plasma system. Ind Eng Chem Res 45:6050–6055

    Article  CAS  Google Scholar 

  • Chen F, Shen X, Wang Y, Zhang J (2012) CeO2/H2O2 system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange 7. Appl Catal B Environ 121:223–229

    Article  CAS  Google Scholar 

  • Cheves Walling AG (1973) Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide: effects of organic substrate. J Am Chem Soc 95:2987–2991

    Article  Google Scholar 

  • CL W, Cao Y, He CC, Dong ZB, Pan WP (2010) Study of elemental mercury re-emission through a lab-scale simulated scrubber. Fuel 89:2072–2080

    Article  CAS  Google Scholar 

  • Cooper CD et al (2002) Investigation of ultraviolet light-enhanced H2O2 oxidation of NOx emissions. J Environ Eng 128:68–72

    Article  CAS  Google Scholar 

  • Dai SK, Tao WL (2014) Experimental research for the application of O3 oxidation in simultaneous removal of SO2, NO, and Hg in coal-fired flue gas. Environ Eng 10:85–89

    Google Scholar 

  • Dennis LEJ (2007) Mercury removal from coal combustion by Fenton reactions-part a.Bench-scale tests. Fuel 86:2789–2797

    Article  CAS  Google Scholar 

  • Diaz-Somoano M, Unterberger S, Hein KR (2005) Using wet-FGD systems for mercury removal. J Environ Monitoring: JEM 7:906–909

    Article  CAS  Google Scholar 

  • Ding J, Zhong Q, Zhang S, Song F, Bu Y (2014) Simultaneous removal of NOx and SO2 from coal-fired flue gas by catalytic oxidation-removal process with H2O2. Chem Eng J 243:176–182

    Article  CAS  Google Scholar 

  • Dranga BA, Lazar L, Koeser H (2012) Oxidation catalysts for elemental mercury in flue gases—a review. Catalysts 2:139–170

    Article  CAS  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    Article  CAS  Google Scholar 

  • Eswaran S, Stenger HG (2008) Effect of halogens on mercury conversion in SCR catalysts. Fuel Process Technol 89:1153–1159

    Article  CAS  Google Scholar 

  • Fan XP, Deng Q (2012) Research progress on the removal of mercury from coal-fired flue gas. Guangzhou Chemical Industry 40:17–19

    CAS  Google Scholar 

  • Fernández-Miranda N, Díaz-Somoano M, Martínez-Tarazona aMR (2014) Effect of oxy-combustion flue gas on mercury oxidation. Environ Sci Technol 48:7164–7170

    Article  CAS  Google Scholar 

  • Fuente-Cuesta A, Lopez-Anton MA, Diaz-Somoano M, Martínez-Tarazona MR (2012) Retention of mercury by low-cost sorbents: influence of flue gas composition and fly ash occurrence. Chem Eng J 213:16–21

    Article  CAS  Google Scholar 

  • Gale TK, Lani BW, Offen GR (2008) Mechanisms governing the fate of mercury in coal-fired power systems. Fuel Process Technol 89:139–151

    Article  CAS  Google Scholar 

  • Gao HL, LZ, et al (2004) Experiment and mechanism study on mercury transformation and mercury removal on simulated combustion flue gases. Doctoral dissertation, Zhejiang University 2:36–39

  • Garoma T, Gurol MD (2004) Degradation of tert-butyl alcohol in dilute aqueous solution by an O3/UV process. Environ Sci Technol 38:5246–5252

    Article  CAS  Google Scholar 

  • Ghorishi SB, Kilgroe JD (1999) Mercury speciation in combustion systems: studies with simulated flue gases and model fly ashes. The 92nd annual meeting of Air & Waste Management Association, Louis, pp 20–24

    Google Scholar 

  • Glomba M, Kordylewski W (2014) Simultaneous removal of NOx, SO2, CO and Hg from flue gas by ozonation. Pilot plant studies. Environ Prot Eng 40:113–125

    Google Scholar 

  • Granite EJ, Pennline HW (2002) Photochemical removal of mercury from flue gas. Ind Eng Chem Res 41:5470–5476

    Article  CAS  Google Scholar 

  • Granite EJ, Freeman MC, Hargis RA, O’dowd WJ, Pennline HW (2007) The thief process for mercury removal from flue gas. J Environ Manag 84:628–634

    Article  CAS  Google Scholar 

  • Hall B (1995) gas phase oxidation of elemental mercury by ozone. Water, Air and Soil Pollution 80:301–315

  • Han YF, Chen F, Zhong Z, Ramesh K, Chen L, Jian D, Ling WW (2007) Complete oxidation of low concentration ethanol in aqueous solution with H2O2 on nanosized Mn3O4/SBA-15 catalyst. Chem Eng J 134:276–281

    Article  CAS  Google Scholar 

  • Hara N (1975) Capture of mercury vapor in air with potassium permanganate solution. Ind Health 13:243–251

    Article  CAS  Google Scholar 

  • Heckert EG, Seal S, Self WT (2008) Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environ Sci Technol 42:5014–5019

    Article  CAS  Google Scholar 

  • Hua XY, Zhou JS, Li Q, Luo ZY, Cen KF (2010) Gas-phase elemental mercury removal by CeO2 impregnated activated coke. Energy Fuel 24:5426–5431

    Article  CAS  Google Scholar 

  • Huang N, Zhu YB, Meng DJ (2015) Novel sorbents and their sorptive properties for mercury emissions control of coal-fired flue gas. Adv Mater Res 1088:332–336

    Article  Google Scholar 

  • Hutson ND (2008) Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber. Am Chem Soc 47:5825–5831

    CAS  Google Scholar 

  • Jeong J, Jurng J (2007) Removal of gaseous elemental mercury by dielectric barrier discharge.Chemosphere 68:2007–2010

  • Ji P, Wang L, Chen F, Zhang J (2010) Ce3+ centric organic pollutant elimination by CeO2 in the presence of H2O2. ChemCatChem 2:1552–1554

    Article  CAS  Google Scholar 

  • Jia L, Dureau R, Ko V, Anthony EJ (2010) Oxidation of mercury under ultraviolet (UV) irradiation. Energy Fuel 24:4351–4356

    Article  CAS  Google Scholar 

  • Jin Y, Yan ZZ, Yu GF et al (2011) Progress in study on multi-pollution control technology for coal-fired flue gas. Thermal Power Generation 40:9–13

    Google Scholar 

  • Kang SF, Liao CH, Chen MC (2002) Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere 46:923–928

    Article  CAS  Google Scholar 

  • Lee SS, Lee J-Y, Keener TC (2008) Novel sorbents for mercury emissions control from coal-fired power plants. J Chin Inst Chem Eng 39:137–142

    Article  CAS  Google Scholar 

  • Li R, Yang C, Chen H, Zeng G, Yu G, Guo J (2009) Removal of triazophos pesticide from wastewater with Fenton reagent. J Hazard Mater 167:1028–1032

    Article  CAS  Google Scholar 

  • Li H, CY W, Li Y, Zhang J (2011) CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environ Sci Technol 45:7394–7400

    Article  CAS  Google Scholar 

  • Li C, Peng D, Fan C, Lu P, Zhang W (2013) Experimental research of simultaneous desulfurization and denitrification by Fenton oxidation method. Chinese. J Environ Eng 7:1059–1064

    CAS  Google Scholar 

  • Liu SY (2011) KMnO4 oxidation absorption research of elemental mercury in flue gas. Chinese J Environ Eng 5:1613–1616

    CAS  Google Scholar 

  • Liu Y, Wang Q (2014) Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor. Environ Sci Technol 48:12181–12189

    Article  CAS  Google Scholar 

  • Liu YX, Zhang J (2011a) A study on kinetics of NO removal from simulated flue gas by wet UV/H2O2 advanced oxidation process. Energy Fuel 6:1102–1107

    Google Scholar 

  • Liu YX, Zhang J (2011b) Photochemical oxidation removal of NO and SO2 from simulated flue gas of coal-fired power plants by wet scrubbing using UV/H2O2 advanced oxidation process. Ind Eng Chem Res 50:3836–3841

    Article  CAS  Google Scholar 

  • Liu Y, Pan J, Tang A, Wang Q (2013) A study on mass transfer–reaction kinetics of NO absorption by using UV/H2O2/NaOH process. Fuel 108:254–260

    Article  CAS  Google Scholar 

  • Liu Y, Pan J, Wang Q (2014a) Removal of Hg0 from containing-SO2/NO flue gas by ultraviolet/H2O2process in a novel photochemical reactor. AICHE J 60:2275–2285

    Article  CAS  Google Scholar 

  • Liu YX, Zhang J, Yin Y (2014b) Study on absorption of elemental mercury from flue gas by UV/H2O2: process parameters and reaction mechanism. Chem Eng J 249:72–78

    Article  CAS  Google Scholar 

  • Liu Y, Wang Y, Wang Q, Pan J, Zhang Y, Zhou J, Zhang J (2015a) A study on removal of elemental mercury in flue gas using Fenton solution. J Hazard Mater 292:164–172

    Article  CAS  Google Scholar 

  • Liu Y, Zhang J, Yin Y (2015b) Removal of Hg0 from flue gas using two homogeneous photo-Fenton-like reactions. AICHE J 61:1322–1333

    Article  CAS  Google Scholar 

  • Malato S, Blanco J, Alarcón DC, Maldonado MI, Fernández-Ibáñez P, Gernjak W (2007) Photocatalytic decontamination and disinfection of water with solar collectors. Catal Today 122:137–149

    Article  CAS  Google Scholar 

  • Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S (2000) Lattice defects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J Phys Chem B 104:11110–11116

    Article  CAS  Google Scholar 

  • McLarnon CR, Granite EJ, Pennline HW (2005) The PCO process for photochemical removal of mercury from flue gas. Fuel Process Technol 87:85–89

    Article  CAS  Google Scholar 

  • Meng B, Feng X, Qiu G, Liang P, Li P, Chen C, Shang L (2011) The process of methylmercury accumulation in rice (Oryza sativa L.) Environ Sci Technol 45:2711–2717

    Article  CAS  Google Scholar 

  • Mosteo R, Ormad M, Ovelleiro J (2007) Photo-Fenton processes assisted by solar light used as preliminary step to biological treatment applied to winery wastewaters. Water Sci Technol 56:89–94

    Article  CAS  Google Scholar 

  • Muruganandham M, Swaminathan M (2004) Photochemical oxidation of reactive azo dye with UV–H2O2 process. Dyes Pigments 62:269–275

    Article  CAS  Google Scholar 

  • Nesheiwat FK, Swanson AG (2000) Clean contaminated sites using Fenton’s reagent. Chem Eng Prog 96:47–52

    Google Scholar 

  • Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98:33–50

    Article  CAS  Google Scholar 

  • Nick D, Hutson RK, Srivastava R (2008) Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber. Ind Eng Chem Res 47:5825–5831

    Article  CAS  Google Scholar 

  • Nidheesh PV, Gandhimathi R, Ramesh ST (2013) Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res 20:2099–2132

    Article  CAS  Google Scholar 

  • Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S (2006) Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40:4048–4063

    Article  CAS  Google Scholar 

  • Pacyna EG, Pacyna JM, Sundseth K, Munthe J, Kindbom K, Wilson S, Steenhuisen F, Maxson P (2010) Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos Environ 44:2487–2499

    Article  CAS  Google Scholar 

  • Pavlish JHSEA, Mann MD (2003) Status review of mercury control options for coal-fired power plants. Fuel Process Technol 82:89–165

    Article  CAS  Google Scholar 

  • Pham T, Brar S, Tyagi R, Surampalli R (2010) Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge. Ultrason Sonochem 17:38–45

    Article  CAS  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  • Ping F, Chao ping C, Zi jun T (2012) Experimental study on the oxidative absorption of Hg0 by KMnO4 solution. Chem Eng J 198-199:95–102

    Article  CAS  Google Scholar 

  • Pouran SR, Raman AAA, Daud WMAW (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35

    Article  CAS  Google Scholar 

  • Presto AA, Granite EJ (2006) Survey of catalysts for oxidation of mercury in flue gas. Environ Sci Technol 40:5601–5609

    Article  CAS  Google Scholar 

  • Qian Y, Chen Y, Jiang Y, Zhang L (2007) A clean production process of sodium chlorite from sodium chlorate. J Clean Prod 15:920–926

    Article  Google Scholar 

  • Qu Z, Xie J, Xu H, Chen W, Yan N (2015) Regenerable sorbent with a high capacity for elemental mercury removal and recycling from the simulated flue gas at a low Temperature. Energy Fuel 29:6187–6196

    Article  CAS  Google Scholar 

  • Rallo M, Lopez-Anton MA, Contreras ML, Maroto-Valer MM (2012) Mercury policy and regulations for coal-fired power plants. Environ Sci Pollut Res Int 19:1084–1096

    Article  CAS  Google Scholar 

  • Rodriguez-Perez J, Lopez-Anton MA, Diaz-Somoano M, Garcia R, Martinez-Tarazona MR (2013) Regenerable sorbents for mercury capture in simulated coal combustion flue gas. J Hazard Mater 260:869–877

    Article  CAS  Google Scholar 

  • Schmeltz D, Evers DC, Driscoll CT, Artz R, Cohen M, Gay D, Haeuber R, Krabbenhoft DP, Mason R, Morris K, Wiener JG (2011) MercNet: a national monitoring network to assess responses to changing mercury emissions in the United States. Ecotoxicology 20:1713–1725

    Article  CAS  Google Scholar 

  • Snider G, Ariya P (2010) Photo-catalytic oxidation reaction of gaseous mercury over titanium dioxide nanoparticle surfaces. Chem Phys Lett 491:23–28

    Article  CAS  Google Scholar 

  • Song W, Cheng M, Ma J, Ma W, Chen C, Zhao J (2006) Decomposition of hydrogen peroxide driven by photochemical cycling of iron species in clay. Environ Sci Technol 40:4782–4787

    Article  CAS  Google Scholar 

  • Umar M, Aziz HA, Yusoff MS (2010) Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag 30:2113–2121

    Article  CAS  Google Scholar 

  • Venkatadri R, Peters RW (1993) Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton's reagent, and titanium dioxide-assisted photocatalysis. Hazardous waste and. Hazard Mater 10:107–149

    Article  CAS  Google Scholar 

  • Wang ZC (2009) Mechanism investigation on oxidization of Hg0 by ozone in flue gas. J Zhejiang University 43:1625–1631

    Google Scholar 

  • Wang Z, Zhou J, Zhu Y, Wen Z, Liu J, Cen K (2007) Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results. Fuel Process Technol 88:817–823

    Article  CAS  Google Scholar 

  • Wang Q, Liu Y, Yang Z, Wang H, Weng X, Wang Y, Wu Z (2014a) Study of mercury re-emission in a simulated WFGD solution containing thiocyanate and sulfide ions. Fuel 134:588–594

    Article  CAS  Google Scholar 

  • Wang Y, Shen X, Chen F (2014b) Improving the catalytic activity of CeO2/H2O2 system by sulfation pretreatment of CeO2. J Mol Catal A Chem 381:38–45

    Article  CAS  Google Scholar 

  • Watts RJ, Sarasa J, Loge FJ, Teel AL (2005) Oxidative and reductive pathways in manganese-catalyzed Fenton’s reactions. J Environ Eng 131:158–164

    Article  CAS  Google Scholar 

  • Wei L, Zhou J, Wang Z, Cen K (2007) Kinetic modeling of homogeneous low-temperature multi-pollutant oxidation by ozone. Ozone: Sci Engineering 29:207–214

    Article  CAS  Google Scholar 

  • Wen X, Li C, Fan X, Gao H, Zhang W, Chen L, Zeng G, Zhao Y (2011) Experimental study of gaseous elemental mercury removal with CeO2/γ-Al2O3. Energy Fuel 25:2939–2944

    Article  CAS  Google Scholar 

  • Wu S, Ozaki M, Uddin M, Sasaoka E (2008) Development of iron-based sorbents for Hg0 removal from coal derived fuel gas: effect of hydrogen chloride. Fuel 87:467–474

    Article  CAS  Google Scholar 

  • Xu Y (2005) Chemical reaction kinetics

  • Xu X, Ye Q, Tang T, Wang D (2008) Hg0 oxidative absorption by K2S2O8 solution catalyzed by Ag+ and Cu2+. J Hazard Mater 158:410–416

    Article  CAS  Google Scholar 

  • Xu W, Wang H, Zhu T, Kuang J, Jing P (2013) Mercury removal from coal combustion flue gas by modified fly ash. J Environ Sci 25:393–398

    Article  CAS  Google Scholar 

  • Xu H, Qu Z, Zong C, Huang W, Quan F, Yan N (2015) MnOx/graphene for the catalytic oxidation and adsorption of elemental mercury. Environ Sci Technol 49:6823–6830

    Article  CAS  Google Scholar 

  • Xue FM (2014) Experimental study on simultaneous oxidation and removal of SO2, NO, and Hg0 in coal-fired flue gas

  • Yan R, Liang DT, Tsen L, Wong YP, Lee YK (2004) Bench-scale experimental evaluation of carbon performance on mercury vapour adsorption. Fuel 83:2401–2409

    Article  CAS  Google Scholar 

  • Yang H, Xu Z, Fan M, Bland AE, Judkins RR (2007) Adsorbents for capturing mercury in coal-fired boiler flue gas. J Hazard Mater 146:1–11

    Article  CAS  Google Scholar 

  • Ye QF, XH X (2007) Mass transfer reaction of KMnO4 absorption of gaseous mercury. J Zhejiang University 41:831–835

    CAS  Google Scholar 

  • Yuan Y, Zhao Y, Li H, Li Y, Gao X, Zheng C, Zhang J (2012) Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas. J Hazard Mater 227-228:427–435

    Article  CAS  Google Scholar 

  • Zazo J, Casas J, Mohedano A, Gilarranz M, Rodriguez J (2005) Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ Sci Technol 39:9295–9302

    Article  CAS  Google Scholar 

  • Zepp RG, Faust BC, Hoigne J (1992) Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol 26:313–319

    Article  CAS  Google Scholar 

  • Zhang J, Zhang R, Chen X, Tong M, Kang W, Guo S, Zhou Y, Lu J (2014) Simultaneous removal of NO and SO2 from flue gas by ozone oxidation and NaOH absorption. Ind Eng Chem Res 53:6450–6456

    Article  CAS  Google Scholar 

  • Zhao LL (1999) Hg absorption in aqueous permanganate. AICHE J 42:3559–3562

    Article  Google Scholar 

  • Zhao Y, Jia JL et al (2006) Development of flue gas mercury control technology. Electric Power 39:59–62

    Google Scholar 

  • Zhao Y, Ma X, Liu S, Yao J (2009) Experiments on and mechanism of simultaneous removal of Hg0, SO2 and NO from flus gas using NaClO2 solution. Environ Technol 30:277–282

    Article  CAS  Google Scholar 

  • Zhao L et al (2015) A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts. Catalysis Sci Technol 5:3459–3472

    Article  CAS  Google Scholar 

  • Zhou C, Sun L, Zhang A, Ma C, Wang B, Yu J, Su S, Hu S, Xiang J (2015) Elemental mercury Hg0 removal from containing SO2/NO flue gas by magnetically separable Fe2.45Ti0.55O4/H2O2 advanced oxidation processes. Chem Eng J 273:381–389

    Article  CAS  Google Scholar 

  • Zhuang Y, Zygarlicke CJ, Galbreath KC, Thompson JS, Holmes MJ, Pavlish JH (2004) Kinetic transformation of mercury in coal combustion flue gas in a bench-scale entrained-flow reactor. Fuel Process Technol 85:463–472

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Lu.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Yan, B., Lu, P. et al. Purification of Hg0 from flue gas by wet oxidation method and its mechanism: a review. Environ Sci Pollut Res 24, 26310–26323 (2017). https://doi.org/10.1007/s11356-017-0480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0480-6

Keywords

Navigation