Skip to main content
Log in

Determination of cytostatic drugs in Besòs River (NE Spain) and comparison with predicted environmental concentrations

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The number of cytostatic drugs used in cancer treatments is wide and increases every year; therefore, tools have been developed to predict their concentration in the environment to prioritize those for monitoring studies. In the present study, the predicted environmental concentrations (PECs) were calculated according to consumption data in Catalonia (NE Spain) for 2014. According to PECs and to the most widely reported compounds, 19 cytostatics were monitored in two sampling campaigns performed along the Besòs River. A total of seven drugs were detected at levels between 0.5 and 656 ng L−1. PEC and measured environmental concentrations (MECs) were compared in order to validate PECs. The PEC/MEC ratio presented a good agreement between predicted and measured concentrations confirming the PEC estimations. Mycophenolic acid, prioritized as the compound with the highest PEC, was detected at the highest concentrations (8.5–656 ng L−1) but showed no risk for aquatic organisms (risk quotient <1) considering acute toxicity tests performed in Daphnia magna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agència Catalana de l’Aigua (2015). https://aca-web.gencat.cat/aca/. Accessed 09/06/2015

  • Besse JP, Latour JF, Garric J (2012) Anticancer drugs in surface waters. What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ Int 39:73–86

    Article  CAS  Google Scholar 

  • Booker V, Halsall C, Llewellyn N, Johnson A, Williams R (2014) Prioritising anticancer drugs for environmental monitoring and risk assessment purposes. Sci Total Environ 473–474:159–170

    Article  Google Scholar 

  • Buerge IJ, Buser HR, Poiger T, Müller MD (2006) Occurrence and fate of the cytostatic drugs cyclophosphamide and ifosfamide in wastewater and surface waters. Environ Sci Technol 40:7242–7250

    Article  CAS  Google Scholar 

  • Cancer Research (UK) (2012) Cancer drugs. http://www.cancerresearchuk.org/about-cancer/cancers-in-general/treatment/cancer-drugs/. Accessed 03/05/2016

  • Coetsier CM, Spinelli S, Lin L, Roig B, Touraud E (2009) Discharge of pharmaceutical products (PPs) through a conventional biological sewage treatment plant: MECs vs PECs? Environ Int 35:787–792

    Article  CAS  Google Scholar 

  • EDQM (2015) Database. https://crs.edqm.eu/. Accessed 21/10/2015

  • EMEA (2006) vol EMEA/CHMP/SWP/4447/00.

  • FDA (1996) Environmental Assessment. http://www.fda.gov/downloads/AnimalVeterinary/DevelopmentApprovalProcess/EnvironmentalAssessments/UCM071903.pdf. Accessed 05/08/14

  • Ferrando-Climent L, Rodriguez-Mozaz S, Barceló D (2014) Incidence of anticancer drugs in an aquatic urban system: from hospital effluents through urban wastewater to natural environment. Environ Pollut 193:216–223

    Article  CAS  Google Scholar 

  • Franquet-Griell H, Gómez-Canela C, Ventura F, Lacorte S (2015) Predicting concentrations of cytostatic drugs in sewage effluents and surface waters of Catalonia (NE Spain). Environmental Research 138:161–172. doi:10.1016/j.envres.2015.02.015

    Article  CAS  Google Scholar 

  • Franquet-Griell H, Medina A, Sans C, Lacorte S (2016a) Biological and photochemical degradation of cytostatic drugs under laboratory conditions. J Hazard Mater doi. doi:10.1016/j.jhazmat.2016.06.057

    Google Scholar 

  • Franquet-Griell H, Ventura F, Boleda MR, Lacorte S (2016b) Do cytostatic drugs reach drinking water? The case of mycophenolic acid Environ Pollut 208. Part B:532–536. doi:10.1016/j.envpol.2015.10.026

  • Genentech (2015) MSDS. http://www.gene.com/. Accessed 21/10/2015

  • Giebułtowicz J, Nałęcz-Jawecki G (2016) Occurrence of immunosuppressive drugs and their metabolites in the sewage-impacted Vistula and Utrata Rivers and in tap water from the Warsaw region (Poland). Chemosphere 148:137–147. doi:10.1016/j.chemosphere.2015.12.135

    Article  Google Scholar 

  • Gómez-Canela C, Campos B, Barata C, Lacorte S (2013a) Degradation and toxicity of mitoxantrone and chlorambucil in water. International Journal of Environmental Science and Technology 12:633–640. doi:10.1007/s13762-013-0454-2

    Article  Google Scholar 

  • Gómez-Canela C, Cortés-Francisco N, Ventura F, Caixach J, Lacorte S (2013b) Liquid chromatography coupled to tandem mass spectrometry and high resolution mass spectrometry as analytical tools to characterize multi-class cytostatic compounds. J Chromatogr A 1276:78–94

    Article  Google Scholar 

  • Gómez-Canela C, Ventura F, Caixach J, Lacorte S (2014) Occurrence of cytostatic compounds in hospital effluents and wastewaters, determined by liquid chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem 406:3801–3814

    Article  Google Scholar 

  • Keller VDJ, Williams RJ, Lofthouse C, Johnson AC (2014) Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors. Environ Toxicol Chem 33:447–452

    Article  CAS  Google Scholar 

  • López-Serna R, Pérez S, Ginebreda A, Petrović M, Barceló D (2010) Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Talanta 83:410–424

    Article  Google Scholar 

  • López-Serna R, Petrović M, Barceló D (2012) Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Sci Total Environ 440:280–289. doi:10.1016/j.scitotenv.2012.06.027

    Article  Google Scholar 

  • Marcus MD, Covington S, Liu B, Smith NR (2010) Use of existing water, sediment, and tissue data to screen ecological risks to the endangered Rio Grande silvery minnow. Sci Total Environ 409:83–94

    Article  CAS  Google Scholar 

  • Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2011) Simultaneous determination of a selected group of cytostatic drugs in water using high-performance liquid chromatography-triple-quadrupole mass spectrometry. Journal of Separation Science 34:3166–3177. doi:10.1002/jssc.201100461

    Article  Google Scholar 

  • Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2014) Occurrence and ecotoxicological risk assessment of 14 cytostatic drugs in wastewater water. Air, Soil Pollut 225:1–10

    Google Scholar 

  • Mendoza A et al (2016) Drugs of abuse, cytostatic drugs and iodinated contrast media in tap water from the Madrid region (central Spain): a case study to analyse their occurrence and human health risk characterization. Environ Int 86:107–118. doi:10.1016/j.envint.2015.11.001

    Article  CAS  Google Scholar 

  • Moldovan Z, Chira R, Alder AC (2009) Environmental exposure of pharmaceuticals and musk fragrances in the Somes River before and after upgrading the municipal wastewater treatment plant Cluj-Napoca. Romania Environmental science and pollution research international 16(Suppl 1):S46–S54

    Article  CAS  Google Scholar 

  • Negreira N, de Alda ML, Barceló D (2014a) Cytostatic drugs and metabolites in municipal and hospital wastewaters in Spain: filtration, occurrence, and environmental risk. Sci Total Environ 497:68–77

    Article  Google Scholar 

  • Negreira N, López de Alda M, Barceló D (2014b) Study of the stability of 26 cytostatic drugs and metabolites in wastewater under different conditions. Sci Total Environ 482–483:389–398. doi:10.1016/j.scitotenv.2014.02.131

    Article  Google Scholar 

  • Negreira N, Mastroianni N, López De Alda M, Barceló D (2013) Multianalyte determination of 24 cytostatics and metabolites by liquid chromatography-electrospray-tandem mass spectrometry and study of their stability and optimum storage conditions in aqueous solution. Talanta 116:290–299

    Article  CAS  Google Scholar 

  • Orias F et al (2015) Tamoxifen ecotoxicity and resulting risks for aquatic ecosystems. Chemosphere 128:79–84. doi:10.1016/j.chemosphere.2015.01.002

    Article  CAS  Google Scholar 

  • Ortiz de García S, Pinto Pinto G, García Encina P, Irusta Mata R (2013) Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci Total Environ 444:451–465

    Article  Google Scholar 

  • Roche (2014) Global Product Strategy & Safety Data Sheets. http://www.roche.com/responsibility/environment/global_product_strategy_and_safety_data_sheets.htm. Accessed 08/08/14

  • Royal Society of Chemistry (2014) ChemSpider. http://www.chemspider.com/. Accessed 20/01/1015

  • U.S. National Library of Medicine (2013) Hazardous Substances Data Bank (HSDB) http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB.

  • Usawanuwat J, Boontanon N, Boontanon SK (2014) Analysis of three anticancer drugs (5-fluorouracil, cyclophosphamide and hydroxyurea) in water samples by HPLC-MS/MS. Int’l Journal of Advances in Agricultural & Environmental Engg 1:5

    Google Scholar 

  • Vademecum (2016) http://www.vademecum.es/. Accessed 03/05/2016

  • Valcárcel Y, González Alonso S, Rodríguez-Gil JL, Gil A, Catalá M (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere 84:1336–1348. doi:10.1016/j.chemosphere.2011.05.014

    Article  Google Scholar 

  • Zounková R, Odráška P, Doležalová L, Hilscherová K, Maršálek B, Bláha L (2007) Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals. Environ Toxicol Chem 26:2208–2214

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Spanish Ministerio de Economía y Competitividad under the project CTM2014-60199-P and the FPI grant BES-2012-053000. Dr. Cristian Gómez-Canela is acknowledged for guidance in the analytical procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Lacorte.

Additional information

Responsible editor: Ester Heath

Electronic supplementary material

ESM 1

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franquet-Griell, H., Cornadó, D., Caixach, J. et al. Determination of cytostatic drugs in Besòs River (NE Spain) and comparison with predicted environmental concentrations. Environ Sci Pollut Res 24, 6492–6503 (2017). https://doi.org/10.1007/s11356-016-8337-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8337-y

Keywords

Navigation